AMIGA ROM Kernel

- Reference Manual
W LIBRARIES
|

L ,,M/

AMIGA TECHNIAL REPFPERENCE: SERIE S

COMMODORE-AMIGA, INC.
4 FE I» K- D E D Bk 4 O N
a5 . i

AMIGA

ROM Kernel Reference Manual:

Libraries
Third Edition

Commodore-Amiga, Inc.

AMIGA TECHNICAL REFERENCE SERIES

A
vv

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
. Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

Contributors:

Bruce Barrett, Mark Barton, Steve Beats, Dave Berezowski, Ray Brand, Bob Burns, Peter Cherna, Eric Cotton, Susan Deyl,

Sam Dicker, Ken Farinsky, Stuart Ferguson, Andy Finkel, Chris Green, Darren Greenwald, Jerry Hartzler, Paul Higginbottom,

Larry Hildenbrand, Randell Jesup, David Junod, Neil Katin, Joe Katz, Kevin Klop, Bill Koester, Adam Levin, Dave Lucas, Dale Luck,
Chris Ludwig, Jim Mackraz, R.J. Mical, David Miller, Bryce Nesbitt, John Orr, Bob Pariseau, Rob Peck, Tom Pohorsky, Nancy Rains,
Chris Raymond, Mark Ricci, Tom Rokicki, Carl Sassenrath, Stan Shepard, Jez San, Michael Sinz, Carolyn Scheppner, Leo Schwab,
Spencer Shanson, Darius Taghavy, Martin Taillefer, Ewout Walraven, Bart Whitebook, John Wiederhirn and Rob Wyesham.

Third edition by:
Dan Baker

Cover designer:
Hannus Design Associates

Copyright © 1992 by Commodore-Electronics, Limited.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book and
Addison-Wesley was aware of a trademark claim, the designations have been printed in initial caps. Amiga is a registered trademark of Commodore-Amiga, Inc. Amiga 500,
Amiga 1000, Amiga 2000, Amiga 3000, AmigaDOS, Amiga Workbench, and Amiga Kickstart are trademarks of Commodore-Amiga, Inc. AUTOCONFIG is a trademark of Com-
modore Electronics Limited. Commodore and the Commodore logo are registered trademarks of Commodore Electronics Limited. Motorola is a registered trademark and
68000, 68010, 68020, 68030, and 68040 are trademarks of Motorola, Inc. CAPE and Inovatronics are trademarks of Inovatronics, Inc. Hisoft and Devpac Amiga are trademarks of
HiSoft. IBM is a registered trademark of International Busi Machines Corp. Macintosh is a registered trademark of Apple Computer, Inc. UNIX is a registered trademark of
Unix Software Laboratories. Intellifont is a registered trademark of Agfa Corp.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

2345678 9-KE-9695949392

Second printing, August 1992
ISBN 0-201-56774-1

WARNING: The information described in this manual may contain errors or bugs, and may not function as described. All information is subject to enhancement or upgrade for
any reason including to fix bugs, add features, or change performance. As with all software upgrades, full compatibility, although a goal, cannot be guaranteed, and is in fact
unlikely.

DISCLAIMER: COMMODORE-AMIGA, INC., ('COMMODORE") MAKES NO WARRANTIES, EITHER EXPRESSED OR IMPLIED, OR REPESENTATIONS WITH RESPECT
TO THE INFORMATION DESCRIBED HEREIN. SUCH INFORMATION IS PROVIDED ON AN "AS IS" BASIS AND IS EXPRESSLY SUBJECT TO CHANGE WITHOUT
NOTICE. IN NO EVENT WILL COMMODORE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY
CLAIM ARISING OUT OF THE INFORMATION PRESENTED HEREIN, EVEN IF IT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABILITIES FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION OR EXCLUSION MAY NOT APPLY.

- ek ek el md —d -k
OoOUubhbhWON-_OOOO~NOOLWDN

17
18
19
20
21
22
23
24
25
26

CONTENTS

Introduction

Introduction to Amiga System Libraries........c.ccceeceeenenenncee. 1

User Interface Libraries

Intuition and the Amiga Graphical User Interface............... 23
INtUItION SCTEEMS.....coververeeirireeeririieeietctetere e e 37
Intuition Windows........cceeereeneeieneniencnenenicneeesecnenneeeenne 77
INtuition GadeLS.....covvivieriieciineeie et eseeseeeeeie e 117
INtUItioN MENUS......eoiiieriieniientieceee st 167
Intuition Requesters and Alerts.........c.coceeeveereriienieniennenne. 201
Intuition Images, Line Drawing and Text..........ccocceenennenne. 223
Intuition Input and Output Methods.........cccceceevevcenernncnncne 245
Intuition Mouse and Keyboard...........ccooevevvcnicicicnnncnne 265
Intuition Special Functions..........coccevceevverienieninnenncnnnenns 283
BOOPSI -- Object-Oriented Intuition..........ccecceeveeercennnnen. 291
PreferenCes. .. civeieieieeeie ettt e 331
Workbench and Icon Library........ccccoeeeveeeenciicnnnicneene 345
GadTools LIbIary......cc.ccoecveiieeeeniieenieniieeieceneeesieeeeeeseeneens 367
ASL LIDIary...c.coviiiiinieineniiieenteiecerce et seeieseeanes 415

Exec Library

Introduction to EXEC......cccoviiviiiiiiiiiniiiiiieniicenic e 429
EXEC LibIaries. ...c.uceeouiiiiiiieeeiieiiie sttt sere e seeeee e 441
ExXec Device I/O......uiiiiiiiiiiiiiin ittt 445
Exec Memory AllOCation..........cceceeveeeienirneeeneennecnecnneenneens 455
EXEC TASKS....eeitieiiieciiecit et site ettt e ee et ae e e e 465
EXEC Signals....c.coccevieiiiiiiniiciintinicecieiiesnesiecsnceneen 481
Exec Lists and QUEUES..........covvveeriieeiiiii e e e 487
Exec Messages and Ports.........ccoocceiiniiiniiiinninnicnnnen 499
Exec Semaphores........c.oocvevveveveneneninecieecesecnesreeeennes 509
EXEC INEITUPLS.....covvenieiiienieiciesiene e ceteeree e ennes 517

iii

Graphics Libraries

27 Graphics Primitives.........coccecevviniiiniiiinneniinenneieenns 531
28 Graphics Sprites, Bobs and Animation.............cccecveveenns 613
29 Graphics Library and Text.........cccooniinmininiinienininicnnennn. 669
30 Layers Library.....cccccoevvviniiininiiniiniiee e 703
Additional Libraries

31 Commodities Exchange Library.......c.ccocovinviinninnninnnnnnen 727
32 EXPANSION ...ccoeevrininiciciiinininiiiinetee s 755
33 IFFParse Library.......ccocceveevecncnencnicnincninienieniencseennenees 777
34 Keymap Library.......cccoccoevcvininrinniinninininieneneereinieennens 811

35 Math Libraries.......ccccceveeveeveeneencerueniinininnieniinieireneereenennes 833
36 Translator Library...........cececceeevecenercninieninnincnnieenens, 865
37 Utility Library......cceceeevveririminininiiiinereneeisesee e, 867

Appendices

A Linker LIDraries........ccccoverierenenenreneneeneninienenesneseensenns 885
B BOOPSI Reference...........couveeveeereenreeninnniniiinuiniiinnoeenens 891

C Example LiDIary........ccoceeeeeeeverermncreneeneriescninnniinniiinenns 909
D Troubleshooting Your Software..........cccooivenininninnnnnnne. 915
E Release 2 Compatibility..........ccccevevirerinenineniiincnniienns 923
INAEX....... e 935

iv

Preface

This edition of the Amiga ROM Kernel Reference Manual: Libraries provides the latest information on
how to program the Amiga line of personal computers from Commodore. It has been updated for Release 2
of the Amiga operating system and covers the newest Amiga computer systems including the A3000.

This book is meant to help you learn how to program the Amiga. It assumes some previous experience
with programming and familiarity with computers in general. Although it is not required, a knowledge of
the C programming language will make it much easier to understand the material in this book. Most of the
Amiga operating system is written in C (with the rest written in 68000 assembly language), hence C is the
language used for the programming examples.

This book is intended for the following audiences:

s]

C and assembly language programmers who want to create application software for the Amiga
line of personal computers.

Amiga software developers who want to upgrade their software for Release 2 of the operating
system.

Anyone who wants to know more about how the Amiga system software works.

The Amiga system software is organized into related groups of functions called libraries. The same organi-
zation is used for this book. Here is a brief overview of the contents:

o

Chapter 1, Introduction to Amiga System Libraries. A look at the Amiga software and hardware
architecture with an introduction to the basic elements of Amiga programming.

Chapters 2-16, User Interface Libraries. An in-depth tutorial on how to create a graphic user
interface for Amiga application software using Intuition and related modules including GadTools,
Workbench, BOOPSI and ASL.

Chapters 17-26, Exec Library. The details on how Exec, the system’s master module, controls
the system with working examples of interrupt processing code, subtask creation, lists and
queues, semaphores, message passing and signalling.

Chapters 27-30, Graphic Libraries. A complete explanation of the functions in the graphic and
layers library that drive the Amiga’s display hardware with examples of text rendering, line draw-
ing, animation and more.

o Chapters 31-37, Additional Libraries. Tutorials on how to use the Amiga commodities, DOS,
IFFParse, keymap, translator and other important libraries in the operating system.

o Appendices. Special sections containing a debugging and troubleshooting guide plus a working
example library for programmers who want to extend the capabilities of the operating system.

We suggest that you use this book according to your level of familiarity with the Amiga system.
Beginners should read the first four chapters and try the examples to get the basics. Then browse
through the Exec chapters to get a deeper understanding of how the system works.

Advanced Amiga programmers should read the chapters on new libraries like IFFParse and GadTools
to find out what’s new in Release 2. Also be sure to review the new Ultility library to see how tag item
lists have been used to implement many of the system improvements in Release 2.

There are four other manuals in the Amiga Technical Reference Series. The Amiga ROM Kernel
Reference Manual: Devices is a companion book to this volume detailing how to write code for the
Amiga’s lower level I/O hardware. The Amiga ROM Kernel Reference Manual: Includes and Auto-
docs is an alphabetically organized reference of ROM function summaries and system include files.
Both these books are required reading for the serious programmer.

Also available are the Amiga User Interface Style Guide, an application design specification and refer-
ence work describing how a standard Amiga application should look and feel; and the Amiga
Hardware Reference Manual, an in-depth description of the custom chips and other hardware com-
ponents underlying the Amiga’s sophisticated design.

vi

Chapter 1

INTRODUCTION TO AMIGA
SYSTEM LIBRARIES

The Amiga, like other microcomputers, contains a ROM full of routines that make programming the
machine easier. The purpose of this book is to show you how to use these routines. Perhaps the best way
to learn Amiga programming is by following examples and that is the method used in this book. Before
starting though it will be helpful to go over some Amiga fundamentals. This section presents some of the
basics that all Amiga programmers need to know.

Programming in the Amiga Environment

To program in the Amiga’s dynamic environment you need to understand these special features of the
Amiga’s design:

o Multitasking (without memory protection)

o Shared libraries of functions

o Dynamic memory architecture (no memory map)

0o Operating system versions

o Custom chips with DMA access (two kinds of memory)

MULTITASKING

The key feature of the Amiga’s operating system design is multitasking. Multitasking means many
programs, or tasks, reside in memory at the same time sharing system resources with one another.
-Programs take turns running so it appears that many programs are running simultaneously.

Multitasking is based on the concept that a program spends most of its time waiting for things to happen. A
program waits for events like key presses, mouse movement, or disk activity. While a program is waiting,
the CPU is idle. The CPU could be used to run a different program during this idle period if there was a
convenient method for rapidly switching from one program to another. This is what multitasking does.

Introduction to Amiga System Libraries 1

What the System Does For You

The Amiga uses preemptive multitasking which means that the operating system keeps track of all the tasks
in memory and decides which one should run. The system checks hundreds of times per second to see
which task should be run based on whether or not it is waiting, and other factors. Since the system handles
all the work of task switching, multitasking is transparent to the application. From the application’s point
of view, it appears to have the machine all to itself.

The Amiga OS also manages the sharing of resources between tasks. This is important because in order for
a variety of tasks to run independently in the Amiga’s multitasking environment, tasks must be prevented
from interfering with one another. Imagine if five tasks were allowed to use the parallel port at the same
time. The result would be I/O chaos. To prevent this, the operating system provides an arbitration method
(usually a function call) for every system resource. For instance you must call a function, AllocMem(), to
get exclusive access to a block of memory.

What the System Doesn’t Do For You

The Amiga operating system handles most of the housekeeping needed for multitasking, but this does not
mean that applications don’t have to worry about multitasking at all. The current generation of Amiga
systems do not have hardware memory protection, so there is nothing to stop a task from using memory it
has not legally acquired. An errant task can easily corrupt some other task by accidentally overwriting its
instructions or data. Amiga programmers need to be extra careful with memory; one bad memory pointer
can cause the machine to crash (debugging utilities such as MungWall and Enforcer will prevent this).

In fact, Amiga programmers need to be careful with every system resource, not just memory. All system
resources from audio channels to the floppy disk drives are shared among tasks. Before using a resource,
you must ask the system for access to the resource. This may fail if the resource is already being used by
another task.

Once you have control of a resource, no other task can use it, so give it up as soon as you are finished.
‘When your program exits, you must give everything back whether it’s memory, access to a file, or an [/O
port. You are responsible for this, the system will not do it for you automatically.

What Every Amiga Programmer Should Know: The Amiga is a multitasking computer. Keep
in mind that other tasks are running at the same time as your application. Always ask the system for
control of any resource you need; some other task may already be using it. Give it back as soon as
you are done; another task may want to use it. This applies to just about every computing activity
your application can perform.

2 Amiga ROM Kernel Reference Manual: Libraries

LIBRARIES OF FUNCTIONS

Most of the routines that make up the Amiga’s operating system are organized into groups called libraries.
In order to call a function on the Amiga you must first open the library that contains the function. For
example, if you want to call the Read() function to read data from disk you must first open the DOS library.

The system’s master library, called Exec, is always open. Exec keeps track of all the other libraries and is
in charge of opening and closing them. One Exec function, OpenLibrary(), is used to open all the other
libraries.

Almost any program you write for the Amiga will have to call the OpenLibrary() function. Usage is as
follows:

struct Library *LibBase; /* Global: declare this above main{() */

main()
{

LibBase = OpenlLibrary("library.name",version};

if(!LibBase) { /* Library did not open, so exit */ }
else { /* Library opened, so use its functions */ }
}

LibBase

This is a pointer to the library structure in memory, often referred to as the library base. The library
base must be global because the system uses it to handle the library’s function calls. The name of this
pointer is established by the system (you cannot use any name you want). Refer to the list below for
the appropriate name.

library.name
This is a C string that describes the name of the library you wish to open. The list of Amiga library
names is given below.

version
This should be set to the earliest acceptable library version. A value of 0 matches any version. A
value of 33 means you require at least version 33, or a later version of the library. If the library
version in the system is older than the one you specify, OpenLibrary() will fail (return 0).

The table listed on the next page shows all the function libraries that are currently part of the Amiga system
software. Column one shows the name string to use with OpenLibrary(); column two shows the name of
the global variable you should use to hold the pointer to the library; column three shows the oldest version
of the library still in use.

Introduction to Amiga System Libraries 3

Table 1-1: Parameters to Use With OpenLibrary()

Library Name Library Base Name Oldest Version In Use
(library.name)* (LibBase) (version)
asl.library AslBase 36
commodities.library CxBase 36
diskfont.library DiskfontBase 33
dos.library DOSBase 33
exec.library SysBase 33
expansion.library ExpansionBase 33
gadtools.library GadToolsBase 36
graphics.library GfxBase 33
icon.library IconBase 33
iffparse.library IFFParseBase 36
intuition.library IntuitionBase 33
keymap.library KeymapBase 33
layers.library LayersBase 33
mathffp library MathBase 33
mathtrans.library MathTransBase 33
mathieeedoubbas.library MathleeeDoubBasBase 33
mathiecedoubtrans.library MathleeeDoubTransBase 33
mathieeesingbas.library MathleeeSingBasBase 33
mathieeesingtrans.library ~ MathleeeSingTransBase 33
rexxsyslib.library RexxSysBase 36
translator.library TranslatorBase 33
utility.library UtilityBase 36
workbench.library WorkbenchBase 33
*Other libraries may exist that are not supplied by Commodore since it is a feature of the operating system to
allow such libraries.
Opening a Library in C

Call OpenLibrary() to open an Amiga function library. OpenLibrary() returns the address of the library
structure (or library base) which you must assign to a specific global system variable as specified in the
table above (case is important).

If the library cannot open for some reason, the OpenLibrary() function returns zero. Here’s a brief
example showing how it’s used in C.

/* easy.c: a complete example of how to cpen an Amiga function library in C.
* In this case the function library is Intuition. Once the Intuition

* function library is open, any Intuition function can be called. This

* example uses the DisplayBeep() function of Intuition to flash the screen.
With SAS/C (Lattice), compile with lc -L easy.c

*

*/

/* Declare the return type of the functions we will use. */
struct Library *OpenLibrary(); /* These Exec library functions can be *x/
void CloseLibrary(); /* called anytime (Exec is always open). */
void DisplayBeep () ; /* Before using this Intuition function, */

/* the Intuition library must be opened */

4 Amiga ROM Kernel Reference Manual: Libraries

struct IntuitionBase *IntuitionBase; /* Get storage for the library base */
/* The base name MUST be IntuitionBase */
int main{()
{
IntuitionBase=(struct IntuitionBase *)OpenlLibrary("intuition.library",33L);
if(IntuitionBase) /* Check to see if it actually opened. */
{ /* The Intuition library is now open so */
DisplayBeep (OL) ; /* any of its functions may be used. */
Closelibrary(IntuitionBase); /* Always close a library if not in use. */
}
else /* The library did not open so return an */
{ /* error code. The exit{) function is */
exit (20); /* not part of the 0S, it is part of the */
} /* compiler link library. */

Opening a Library in Assembler

Here’s the same example written in 68000 assembler. The principles are the same as with C: you must
always open a library before using any of its functions. However, in assembler, library bases are treated a
little differently than in C. In C, you assign the library base you get from OpenLibrary() to a global
variable and forget about it (the system handles the rest). In assembler, the library base must always be in
register A6 whenever calling any of the functions in the library.

You get the library base for any library except Exec, by calling OpenLibrary(). For Exec, you get the
library base from the longword in memory location 4 ($0000 0004). Exec is opened automatically by the
system at boot time, and its library base is stored there.

AAKKRK KR RE AR KK KRR KRR KK KK KR KA KRR AN AR AR AR AR AR KR AR KA KRR A A AR KA KRR A KA AN kA K

* A complete ready-to-assemble example of how to open an Amiga function

* library in 68000 assembler,
* is opened and one of its functions,

¢

When calling an Amiga function,
(the library is free to depend on this).
* and Al may be destroyed by the library,

* A6

*

_AbsExecBase EQU 4

In this case the Intuition function library

DisplayBeep() is called.

the library base pointer *must* be in

Registers DO, D1, AO
all others will be preserved.

;System pointer to Exec’s library base

XREF _LvOOpenLibrary ;Offset from Exec base for OpenLibrary()
XREF _LVOCloseLibrary ;Offset from Exec base for Closelibrary ()
XREF _LvODisplayBeep ;Offset from Intuition base for DisplayBeep ()
move.l _AbsExecBase, a6 ;Move exec.library base to a6
lea.l IntuiName (pc),al ;Pointer to "intuition.library" string
moveq #33,d0 ;Version of library needed
jsr LVOOpenLibrary (a6) ;Call Exec’s OpenLibrary() and
tst.l do ;check to see if it succeeded
bne.s open_ok
moveq #20,d0 ;Set failure code
rts ;Failed exit

open ok move.l d0,aé ;Put IntuitionBase in a6.

- suba.l a0,a0 ;Load zero into a0

jsr _LVODisplayBeep (a6) ;Call Intuition’s DisplayBeep(
move.l a6,al ;Put IntuitionBase into al
move.l _AbsExecBase, a6
isr _LvOCloselibrary (a6) ;Call Exec’s CloselLibrary()
moveq #0,d0 ;Set return code
rts

IntuiName: dc.b ‘intuition.library’,0
END

Introduction to Amiga System Libraries 5

The Amiga library functions are set up to accept parameters in certain 68000 registers and always return
results in data register DO. This allows programs and functions written in assembler t0 communicate
quickly. It also eliminates the dependence on the stack frame conventions of any particular language.

Amiga library functions use registers DO, D1, A0 and A1l for work space and use register A6 to hold the
library base. Do not expect these registers to be the same after calling a function. All routines return a full
32 bit longword unless noted otherwise.

Another Kind of Function Library

The Amiga has two kinds of libraries: run-time libraries and link libraries. All the libraries discussed so far
are run-time libraries. Run-time libraries make up most of the Amiga’s operating system and are the main
topic of this book.

There is another type of library known as a link library. Even though a link library is a collection of
functions just like a run-time library, there are some major differences in the two types.

Run-time libraries
A run-time, or shared library is a group of functions managed by Exec that resides either in ROM or
on disk (in the LIBS: directory). A run-time library must be opened before it can be used (as
explained above). The functions in a run-time library are accessed dynamically at run-time and can be
used by many programs at once even though only one copy of the library is in memory. A disk based
run-time library is loaded into memory only if requested by a program and can be automatically
flushed from memory when no longer needed. ‘

Link libraries

A link library is a group of functions on disk that are managed by the compiler at link time. Link
libraries do not have to be opened before they are used, instead you must link your code with the
library when you compile a program. The functions in a link library are actually copied into every
program that uses them. For instance the exit() function used in the C program listed above is not part
of any of the libraries that make up the Amiga OS. It comes from the link library supplied with the
compiler (lc.lib for SAS/Lattice C or c.lib for Manx Aztec C). The code that performs the exit()
function is copied into the program when it is compiled.

Libraries, Devices and Resources

Most of the Amiga’s OS routines are organized into groups of shared run-time libraries. The Amiga also
has specialized function groups called devices and resources that programmers use to perform basic I/O
operations or access low-level hardware.

Devices and resources are similar in concept to a shared run-time library. They are managed by Exec and
must be opened before they can be used. Their functions are separate from the programs that use them and
are accessed dynamically at run time. Multiple programs can access the device or resource even though
only one copy exists in memory (a few resources can only be used by one program at a time.)

6 Amiga ROM Kernel Reference Manual: Libraries

Workbench
Icons/Drawers/
Utilities

AmigaDOS CLI
and Utilities

Console
Device

Intuition
Windows, Menus,
Gadgets, Events

AmigaDOS
Processes,
File System

Graphics
Rendering, Text,
Gels

Serial
& Paraliel
Devices

SCSI| &
Trackdisk
Device

Keyboard
& Gameport
Devices

Audio
Device

Exec: Tasks, Messages, Interrupts, 1/0O, Libraries and Devices t

Keyboard
& Mouse

Disk Control 1/0 Ports

T T
] 1
! Graphics ! Audio
l 1
]]

Figure 1-1: Amiga System Software Hierarchy

Devices and resources are managed by Exec just as libraries are. For more information on devices and
resources, see the chapter on ‘‘Exec Device 1/O’’ later in this book or refer to the Amiga ROM Kernel
Reference Manual: Devices for detailed descriptions of each device.

What Every Amiga Programmer Should Know: The functions in the Amiga OS are accessed
through shared run-time libraries. Libraries must be opened before their functions may be used.
The system’s master library, Exec, is always open. The Exec function OpenLibrary() is used to

open all other libraries.

Introduction to Amiga System Libraries 7

DYNAMIC MEMORY ARCHITECTURE

Unlike some microcomputer operating systems, the Amiga OS relies on absolute memory addresses as little
as possible. Instead the Amiga OS uses a technique (sometimes referred to as soft machine architecture)
which allows system routines and data structures to be positioned anywhere in memory.

Amiga run-time libraries may be positioned anywhere in memory because they are always accessed through

a jump table. Each library whether in ROM or loaded from disk has an associated Library structure and
jump table in RAM.

Low Memory

JMP Function N

JMP Function 3
JMP Function 2
JMP Function 1

Library Base

Library Structure

Data Area

High Memory

Figure 1-1: Amiga Library Structure and Jump Table

The system knows where the jump table starts in RAM because when a library is opened for the first time,
Exec creates the library structure and keeps track of its location. The order of the entries in the library’s
jump-table is always preserved between versions of the OS but the functions they point to can be anywhere
in memory. Hence, system routines in ROM may be moved from one version of the OS to another. Given
the location of the jump table and the appropriate offset into the table, any function can always be found.

Not only are system routines relocatable but system data structures are too. In the Amiga’s multitasking
environment, multiple applications run at the same time and each may have its own screen, memory, open
files, and even its own subtasks. Since any number of application tasks are run and stopped at the user’s
option, system data structures have to be set up as needed. They cannot be set up ahead of time at a fixed
memory location because there is no way to tell how many and what type will be needed.

The Amiga system software manages this confusion by using linked lists of information about items such as
libraries, tasks, screens, files and available memory. A linked list is a chain of data items with each data
item containing a pointer to the next item in the chain. Given a pointer to the first item in a linked list,
pointers to all the other items in the chain can be found.

8 Amiga ROM Kernel Reference Manual: Libraries

Exec: The System Executive

On the Amiga, the module that keeps track of linked lists is Exec, the system executive. Exec is the heart
of the Amiga operating system since it also is in charge of multitasking, granting access to system resources
(like memory) and managing the Amiga library system.

As previously discussed, memory location 4 ($0000 0004), also known as SysBase, contains a pointer to
the Exec library structure. This is the only absolutely defined location in the Amiga operating system. A
program need only know where to find the Exec library to find, use and manipulate all other system code
and data.

$04 Sysbase

v

Exec Library

LIBRARIES MEMORY ~RESOURCES PORTS

DEVICES INTS

DOS Trackdisk Chunk1 Potgo END IDCMP
Graphics Serial Chunk2 Keymap IDCMP READY WAITING
Intuition Parallel END Workbench Shell FileSystem
Expansion Printer END RAM FileSystem
La;:ers ln;ut Appligation Input.aevioe
Task 1
Mathffp Keyboard END
Application
Icon Gameport Task 2
Disl';font Tlrﬁer EﬁD
END Audio
Corrsole
END

Figure 1-2: Exec and the Organization of the Amiga OS

The diagram above shows how the entire Amiga operating system is built as a tree starting at SysBase.
Exec keeps linked lists of all the system libraries, devices, memory, tasks and other data structures. Each of
these in turn can have its own variables and linked lists of data structures built onto it. In this way, the
flexibility of the OS is preserved so that upgrades can be made without jeopardizing compatibility.

What Every Amiga Programmer Should Know: The Amiga has a dynamic memory map. There
are no fixed locations for operating system variables and routines. Do not call ROM routines or
access system data structures directly. Instead use the indirect access methods provided by the
system.

Introduction to Amiga System Libraries 9

OPERATING SYSTEM VERSIONS

The Amiga operating system has undergone several major revisions summarized in the table below. The
latest revision is Release 2 (corresponds to library versions 36 and above).

System library Kickstart release

version
number
0 Any version
30 Kickstart V1.0 (obsolete)
31 Kickstart V1.1 (NTSC only - obsolete)
32 Kickstart V1.1 (PAL only - obsolete)
33 Kickstart V1.2 (the oldest revision still in use)
34 Kickstart V1.3 (adds autoboot to V33)
35 Special Kickstart version to support A2024 high-resolution monitor
36 Kickstart V2.0 (old version of Release 2)
37 Kickstart V2.04 (current version of Release 2)

The examples listed throughout this book assume you are using Release 2.

Many of the libraries and functions documented in this manual are available in all versions of the Amiga
operating system. Others are completely new and cannot be used unless you have successfully opened the
appropriate version of the library.

To find out which functions are new with Release 2 refer to the ROM Kernel Reference Manual: Includes
and Autodocs. The functions which are new are marked with (V36) or (V37) in the NAME line of the
function Autodoc. These new functions require you to use a matching version number (36, 37, or higher)
when opening the library.

Exit gracefully and informatively if the required library version is not available.

About Release 2

Release 2 first appeared on the Amiga 3000. This initial version corresponds to Kickstart V2.00, system
library version number V36. Release 2 was subsequently revised and this older version is now considered
obsolete.

Programs written for Release 2 should use only the later version corresponding to Kickstart V2.04, system
library version number V37. If your system is using the earlier version of Release 2, you should upgrade
your system. (Upgrade kits may be obtained from an authorized Commodore service center.)

What Every Amiga Programmer Should Know: Some libraries or specific functions are not
available in older versions of the Amiga operating system. Be sure to ask for the lowest library
version that meets the requirements of your program.

10 Amiga ROM Kernel Reference Manual: Libraries

THE CUSTOM CHIPS

The most important feature of the Amiga’s hardware design is the set of custom chips that perform
specialized tasks independently of the CPU. Each of the custom chips (named Paula, Agnus, and Denise) is
dedicated to a particular job:

Paula (8364) Audio, floppy disk, serial, interrupts

Agnus (8361/8370/8372) Copper (video coprocessor), blitter, DMA control

Denise (8362) Color registers, color DACs (Digital to Analog Converters)
and sprites

The custom chips can perform work independently of the CPU because they have DMA, or Direct Memory
Access, capability. DMA means the custom chips can access special areas of memory by themselves
without any CPU involvement. (On computer systems without DMA, the CPU must do some or all of the
memory handling for support chips.) The Amiga’s custom chips make multitasking especially effective
because they can handle things like rendering graphics and playing sound independently, giving the CPU
more time to handle the overhead of task-switching and other important jobs.

Custom Chip Revisions

The custom chips have been revised as the Amiga platform has evolved and newer models of the Amiga
developed. The latest revision of the Amiga custom chips is known as the Enhanced Chip Set, or ECS.
Certain features of the Amiga operating system, such as higher resolution screens and special genlock
modes, require the ECS version of the custom chips. In this book, features that require ECS are noted in
the accompanying text. For more details about the special features of ECS, see Appendix C of the Amiga
Hardware Reference Manual.

Two Kinds of Memory

To keep the Amiga running efficiently, the Amiga has two memory buses and two kinds of memory. Chip
memory is memory that both the CPU and custom chips can access. Fast memory is memory that only the
CPU (and certain expansion cards) can access. Since Chip memory is shared, CPU access may be slowed
down if the custom chips are doing heavy-duty processing. CPU access to Fast memory is never slowed
down by contention with the custom chips.

The distinction between Chip memory and Fast memory is very important for Amiga programmers to keep
in mind because any data accessed directly by the custom chips such as video display data, audio data or
sprite data must be in Chip memory.

What Every Amiga Programmer Should Know: The Amiga has two kinds of memory: Chip
memory and Fast memory. Use the right kind.

Introduction to Amiga System Libraries 11

About the Examples

For the most part, the examples in this book are written in C (there are a few 68000 assembly language
examples too).

C examples have been compiled under SAS C, version 5.10a. The compiler options used with each
example are noted in the comments preceding the code.

In general, the examples are also compatible with Manx Aztec C 68K, version 5.0d, and other C compilers,
however some changes will usually be necessary. Specifically, all the C examples assume that the
automatic Ctrl-C feature of the compiler has been disabled. For SAS C (and Lattice C revisions 4.0 and
greater) this is handled with:

/* Add this before main() to override the default Ctrl-C handling
* provided in SAS (Lattice) C. Ctrl-C event will be ignored */

int CXBRK (void) { return(0); }

int chkabort (void) { return(0); }

For Manx Aztec C, replace the above with:

/* Add this near the top */
#include <functions.h>

/* Add this before main() */
extern int Enable Abort; /* reference abort enable */

/* Add this after main(), as the first active line in the program */
Enable_Abort=0; /* turn off CTRL-C */

Other changes may be required depending on the example and the C compiler you are using. Most of the C
examples in this book use the following special option flags of the SAS/C compiler (set the equivalent
option of whatever compiler you are using):

-bl
-cf

Small data model.

Check for function prototypes.

Ignore #include statements that are identical to one already given.
Store all literal strings that are identical in the same place.
Enable warnings for structures that are used before they are defined.

non o

0
nn

Do not include stack checking code with each function.

Load register A4 with the data section base address on function entry.
The -v and -y flags are are generally only needed for parts of the
program that are called directly by the system such as interrupt
servers, subtasks, handlers and callback hook functions.

1
<
o

Except where noted, each example was linked with the standard SAS/C startup code c.o, the SAS/C linker
library lc.lib and the Commodore linker library amiga.lib. The SAS/C compiler defaults to 32-bit ints. If
your development environment uses 16-bit ints you may need to explicitly cast certain arguments as longs
(for example 1L << sigbit instead of 1 << sigbit).

The 68000 assembly language examples have been assembled under the Innovatronics CAPE assembler

V2.x, the HiSoft Devpac assembler V1.2, and the Lake Forest Logic ADAPT assembler 1.0. No substantial
changes should be required to switch between assemblers.

12 Amiga ROM Kernel Reference Manual: Libraries

General Amiga Development Guidelines

In the earlier sections of this chapter, the basic environment of the Amiga operating system was discussed.
This sections presents specific guidelines that all Amiga programmers must follow. Some of these
guidelines are for advanced programmers or apply only to code written in assembly language.

s]

Check for memory loss. Arrange your Workbench screen so that you have a Shell available and can
start your program without rearranging any windows. In the Shell window type Avail flush several
times (the flush option requires the Release 2 version of the Avail command). Note the total amount
of free memory. Run your program (do not rearrange any windows other than those created by the
program) and then exit. At the Shell, type Avail flush several times again. Compare the total amount
of free memory with the earlier figure. They should be the same. Any difference indicates that your
application is not freeing some memory it used or is not closing a disk-loaded library, device or font it
opened. Note that under Release 2, a small amount of memory loss is normal if your application is the
first to use the audio or narrator device.

Use all of the program debugging and stress tools that are available when writing and testing your
code. New debugging tools such as Enforcer, MungWall, and Scratch can help find uninitialized
pointers, attempted use of freed memory and misuse of scratch registers or condition codes (even in
programs that appear to work perfectly).

Always make sure you actually get any system resource that you ask for. This applies to memory,
windows, screens, file handles, libraries, devices, ports, etc. Where an error value or return is possible,
ensure that there is a reasonable failure path. Many poorly written programs will appear to be reliable,
until some error condition (such as memory full or a disk problem) causes the program to continue
with an invalid or null pointer, or branch to untested error handling code.

Always clean up after yourself. This applies for both normal program exit and program termination
due to error conditions. Anything that was opened must be closed, anything allocated must be
deallocated. It is generally correct to do closes and deallocations in reverse order of the opens and
allocations. Be sure to check your development language manual and startup code; some items may
be closed or deallocated automatically for you, especially in abort conditions. If you write in the C
language, make sure your code handles Ctrl-C properly.

Remember that memory, peripheral configurations, and ROMs differ between models and between
individual systems. Do not make assumptions about memory address ranges, storage device names, or
the locations of system structures or code. Never call ROM routines directly. Beware of any example
code you find that calls routines at addresses in the $FO 0000 - $FF FFFF range. These are ROM
routines and they will move with every OS release. The only supported interface to system ROM code
is through the library, device, and resource calls.

Never assume library bases or structures will exist at any particular memory location. The only
absolute address in the system is $0000 0004, which contains a pointer to the Exec library base. Do
not modify or depend on the format of private system structures. This includes the poking of copper
lists, memory lists, and library bases.

Never assume that programs can access hardware resources directly. Most hardware is controlled by
system software that will not respond well to interference from other programs. Shared hardware
requires programs to use the proper sharing protocols. Use the defined interface; it is the best way to
ensure that your software will continue to operate on future models of the Amiga.

Introduction to Amiga System Libraries 13

o Never access shared data structures directly without the proper mutual exclusion (locking). Remember
that other tasks may be accessing the same structures.

o The system does not monitor the size of a program’s stack. (Your compiler may have an option to do
this for you.) Take care that your program does not cause stack overflow and provide extra stack space
for the possibility that some functions may use up additional stack space in future versions of the OS.

o Never use a polling loop to test signal bits. If your program waits for external events like menu
selection or keystrokes, do not bog down the multitasking system by busy-waiting in a loop. Instead,
let your task go to sleep by Wait()ing on its signal bits. For example:

signals = (ULONG)Wait ((1<<windowPtr->UserPort->mp SigBit) |
(l<<consoleMsgPortPtr->mp SigBit));

This turns the signal bit number for each port into a mask, then combines them as the argument for the
Exec library Wait() function. When your task wakes up, handle all of the messages at each port where
the mp_SigBit is set. There may be more than onec message per port, or no messages at the port.
Make sure that you ReplyMsg() to all messages that are not replics themselves. If you have no signal
bits to Wait() on, use Delay() or WaitTOF() to provide a measured delay.

o Tasks (and processes) execute in 680x0 user mode. Supervisor mode is reserved for interrupts, traps,
and task dispatching. Take extreme care if your code executes in supervisor mode. Exceptions while
in supervisor mode are deadly.

o Most system functions require a particular execution environment. All DOS functions and any
functions that might call DOS (such as the opening of a disk-resident library, font, or device) can only
be executed from a process. A task is not sufficient. Most other ROM kemnel functions may be
executed from tasks. Only a few may be executed from interrupts.

@ Never disable interrupts or multitasking for long periods. If you use Forbid() or Disable(), you
should be aware that execution of any system function that performs the Wait() function will
temporarily suspend the Forbid() or Disable() state, and allow multitasking and interrupts to occur.
Such functions include almost all forms of DOS and device I/O, including common stdio functions
like printf().

o Never tie up system resources unless it is absolutely necessary. For example, if your program does not
require constant use of the printer, open the printer device only when you need it. This will allow
other tasks to use the printer while your program is running. You must provide a reasonable error
response if a resource is not available when you need it.

o All data for the custom chips must reside in Chip memory (type MEMF_CHIP). This includes
bitplanes, sound samples, trackdisk buffers, and images for sprites, bobs, pointers, and gadgets. The
AllocMem() call takes a flag for specifying the type of memory. A program that specifies the wrong
type of memory may appear to run correctly because many Amigas have only Chip memory. (On all
models of the Amiga, the first 512K of memory is Chip memory. In later models, Chip memory may
occupy up to the first one or two megabytes).

However, once expansion memory has been added to an Amiga (type MEMF_FAST), any memory
allocations will be made in the expansion memory area by default. Hence, a program can run correctly
on an unexpanded Amiga which has only Chip memory while crashing on an Amiga which has
expanded memory. A developer with only Chip memory may fail to notice that memory was
incorrectly specified.

14 Amiga ROM Kernel Reference Manual: Libraries

Most compilers have options to mark specific data structures or object modules so that they will load
into Chip RAM. Some older compilers provide the Atom utility for marking object modules. If this
method is unacceptable, use the AllocMem() call to dynamically allocate Chip memory, and copy
your data there.

When making allocations that do not require Chip memory, do not explicitly ask for Fast memory.
Instead ask for memory type MEMF_PUBLIC or OL as appropriate. If Fast memory is available, you
will get it.

Never use software delay loops! Under the multitasking operating system, the time spent in a loop can
be better used by other tasks. Even ignoring the effect it has on multitasking, timing loops are
inaccurate and will wait different amounts of time depending on the specific model of Amiga
computer. The timer device provides precision timing for use under the multitasking system and it
works the same on all models of the Amiga. The AmigaDOS Delay() function or the graphics library
WaitTOF() function provide a simple interface for longer delays. The 8520 I/O chips provide timers
for developers who are bypassing the operating system (see the Amiga Hardware Reference Manual
for more information).

Always obey structure conventions!

« All non-byte fields must be word-aligned. Longwords should be longword-aligned for
performance.

e All address pointers should be 32 bits (not 24 bits). Never use the upper byte for data.

e Fields that are not defined to contain particular initial values must be initialized to zero. This
includes pointer fields.

» Allreserved or unused fields must be initialized to zero for future compatibility.
« Data structures to be accessed by the custom chips, public data structures (such as a task control
block), and structures which must be longword aligned must not be allocated on a program’s

stack.

e Dynamic allocation of structures with AllocMem() provides longword aligned memory of a
specified type with optional initialization to zero, which is useful in the allocation of structures.

FOR 68010/68020/68030/68040 COMPATIBILITY

Special care must be taken to be compatible with the entire family of 68000 processors:

a

Do not use the upper 8 bits of a pointer for storing unrelated information. The 68020, 68030, and
68040 use all 32 bits for addressing.

Do not use signed variables or signed math for addresses.

Do not use software delay loops, and do not make assumptions about the order in which asynchronous
tasks will finish.

Introduction to Amiga System Libraries 15

o The stack frame used for exceptions is different on each member of the 68000 family. The type
identification in the frame must be checked! In addition, the interrupt autovectors may reside in a
different location on processors with a VBR register.

o Do not use the MOVE SR, <dest> instruction! This 68000 instruction acts differently on other members
of the 68000 family. If you want to get a copy of the processor condition codes, use the Exec library
GetCC() function.

o Do not use the crr instruction on a hardware register which is triggered by Write access. The 68020
cLRr instruction does a single Write access. The 68000 cir instruction does a Read access first, then a
Write access. This can cause a hardware register to be triggered twice. Use MOVE.x #0, <address>
instead.

o Self-modifying code is strongly discouraged. All 68000 family processors have a pre-fetch feature.
This means the CPU loads instructions ahead of the current program counter. Hence, if your code
modifies or decrypts itself just ahead of the program counter, the pre-fetched instructions may not
match the modified instructions. The more advanced processors prefetch more words. If self-
modifying code must be used, flushing the cache is the safest way to prevent troubles.

@ The 68020, 68030 and 68040 processors all have instruction caches. These caches store recently used
instructions, but do not monitor writes. After modifying or directly loading instructions, the cache
must be flushed. See the Exec library CacheClearU() Autodoc for more details. If your code takes
over the machine, flushing the cache will be trickier. You can account for the current processors, and
hope the same techniques will work in the future:

CACRF_Clearl EQU $0008 ;Bit for clear instruction cache
;Supervisor mode only. Use this only if you have taken over the
;machine. Read and store the ExecBase processor AttnFlags flags at

;boot time, call this code only if the "68020 or better" bit was set.

;
ClearICache: dc.w $4E7A,$0002 ;MOVEC CACR, DO

tst.w do ;movec does not affect CC’s
bmi.s cic_040 ;A 68040 with enabled cache!
ori.w #CACRF_ClearI,d0
dc.w $4E7B, $0002 ;MOVEC DO, CACR
bra.s cic_exit

cic_040: dc.w $£4b8 ;CPUSHA (IC)

cic_exit:

HARDWARE PROGRAMMING GUIDELINES

If you find it necessary to program the hardware directly, then it is your responsibility to write code that
will work correctly on the various models and configurations of the Amiga. Be sure to properly request and
gain control of the hardware resources you are manipulating, and be especially careful in the following
areas:

o Kickstart 2.0 uses the 8520 Complex Interface Adaptor (CIA) chips differently than 1.3 did. To ensure
compatibility, you must always ask for CIA access using the cia.resource AddICRVector() and
RemICRVector() functions. Do not make assumptions about what the system might be using the
CIA chips for. If you write directly to the CIA chip registers, do not expect system services such as
the trackdisk device to function. If you are leaving the system up, do not read or write to the CIA
Interrupt Control Registers directly; use the cia.resource AbleICR(), and SetICR() functions. Even if
you are taking over the machine, do not assume the initial contents of any of the CIA registers or the
state of any enabled interrupts.

16 Amiga ROM Kernel Reference Manual: Libraries

a All custom chip registers are Read-only or Write-only. Do not read Write-only registers, and do not
write to Read-only registers.

o Never write data to, or interpret data from the unused bits or addresses in the custom chip space. To
be software-compatible with future chip revisions, all undefined bits must be set to zeros on writes,
and must be masked out on reads before interpreting the contents of the register.

o Never write past the current end of custom chip space. Custom chips may be extended or enhanced to
provide additional registers, or to use bits that are currently undefined in existing registers.

o Never read, write, or use any currently undefined address ranges or registers. The current and future
usage of such areas is reserved by Commodore and is subject to change.

o Never assume that a hardware register will be initialized to any particular value. Different versions of
the OS may leave registers set to different values. Check the Amiga Hardware Reference Manual to
ensure that you are setting up all the registers that affect your code.

ADDITIONAL ASSEMBLER DEVELOPMENT GUIDELINES

If you are writing in assembly language there are some extra rules to keep in mind in addition to those
listed above.

o Never use the Tas instruction on the Amiga. System DMA can conflict with this instruction’s special
indivisible read-modify-write cycle.

o System functions must be called with register A6 containing the library or device base. Libraries and
devices assume A6 is valid at the time of any function call. Even if a particular function does not
currently require its base register, you must provide it for compatibility with future system software
releases.

o Except as noted, system library functions use registers DO, D1, A0, and Al as scratch registers and
you must consider their former contents to be lost after a system library call. The contents of all other
registers will be preserved. System functions that provide a result will return the result in DO.

o Never depend on processor condition codes after a system call. The caller must test the returned value
before acting on a condition code. This is usually done with a TsT or MovE instruction.

Introduction to Amiga System Libraries 17

1.3 Compatibility Issues

This 3rd edition of the Amiga Technical Reference Series focuses on the Release 2 version of the Amiga
operating system (Kickstart V2.04, V37). Release 2 of the operating system was first shipped on the Amiga
3000 and now available as an upgrade kit for the Amiga 500 and Amiga 2000 models to replace the older
1.3 (V34) operating system. Release 2 contains several new libraries and hundreds of new library functions
and features to assist application writers.

DESIGN DECISIONS

The latest Amiga models, including all A3000’s, are running Release 2. But many older Amigas are still
running 1.3 at this time. Depending on your application and your market, you may choose to require the
Release 2 operating system as a minimum platform. This can be a reasonable requirement for vertical
markets and professional applications. Release 2 can also be a reasonable requirement for new revisions of
existing software products, since you could continue to ship the older 1.3-compatible release in the same
package. If you have made the decision to require Release 2, then you are free to take advantage of all of
the new libraries and features that Release 2 provides.

Throughout this latest edition of the Amiga Technical Reference Series, features, functions and libraries that
are new for Release 2 are usually indicated by (V36) or (V37) in the description of the feature. Such
features are not available on Amiga models that are running 1.3 (V34) or earlier versions of the OS.
Unconditional use of Release 2 functions will cause a program to fail when it is run on a machine with the
1.3 OS. Itis very important to remember this when designing and writing your code.

Developers of consumer-priced productivity, entertainment and utility software may not yet be ready to
write applications that require Release 2, but even these developers can enhance their products by taking
advantage of Release 2 while remaining 1.3 compatible.

There are three basic methods that will allow you to take advantage of enhanced Release 2 features while
remaining 1.3 compatible:

0 Transparent Release 2 Extensions
o Conditional Code

o Compatible Libraries

Transparent Release 2 Extensions

To provide Release 2 enhancements while remaining compatible with the older 1.3 version of the OS,
several familiar 1.3 system structures have been extended to include an optional pointer to additional
information. The new extended versions of such structures are generally defined in the same include file as
the original structure. These extended structures are passed to the same 1.3 system functions as the
unextended structure (e¢.g., OpenWindow(), OpenScreen, AddGadget, OpenDiskFont()). The existence
of the extended information is signified by setting a new flag bit in the structure. (In one case,
PROPNEWLOOK, only the flag bit itself is significant). These extensions are transparent to previous
versions of the operating system. Only the Release 2 operating system will recognize the bit and act on the
extended information.

18 Amiga ROM Kernel Reference Manual: Libraries

The table below lists the flag bit for each structure to specify that extended information is present.

Original Extended Flag Field Flag Bit Defined In
NewScreen ExtNewScreen Type NS_EXTENDED <intuition/screens.h>
NewWindow ExtNewWindow Flags WFLG_NW_EXTENDED <intuition/intuition.h>
Gadget Gadget Flags GFLG_STRINGEXTEND <intuition/intuition.h>
Proplnfo PropInfo Flags PROPNEWLOOK <intuitionlintuition.h
TextAttr TTextAttr tta_Style FSF_TAGGED <graphicsitext.h>

Through the use of such extensions, applications can request special Release 2 features in a 1.3-compatible
manner. When the application is run on a Release 2 machine, the enhanced capabilities will be active.

The enhancements available through these extensions include:

Screen: Overscan, 3D Look (SA_Pens), public screens, PAL/NTSC, new modes
Window: Autoadjust sizing, inner dimensions, menu help

Gadget: Control of font, pens, and editing of string gadgets

PropInfo: Get 3D Look proportional gadgets when running under Release 2
TTextAttr: Control width of scaled fonts

Extensible longword arrays called TagItem lists are used to specify the extended information for many of
these structures. Tag lists provide an open-ended and backwards-compatible method of growing system
structures by storing all new specifications in an extendible array of longwords pairs.

Another transparent Release 2 extension is the diskfont library’s ability to scale bitmap and outline fonts to
arbitrary sizes and the availability of scalable outline fonts. Make sure that these new scalable fonts are
available to your application by not setting the FPF_DESIGNED flag for AvailFonts() or
OpenDiskFont(). Allow the user to create new font sizes by providing a way for her to manually enter the
desired font size (the 1.3 OS returns the closest size, Release 2 returns the requested size).

See the Intuition and graphics library chapters, and the include file comments for additional information.
See the ‘“Utility Library’’ chapter for more information on TagItems and tag lists.

Conditional Code

Conditional code provides a second way to take advantage of Release 2 enhancements in a 1.3-compatible
application. The basic idea is to add low overhead conditional code, based on library version, to make use
of selected Release 2 features if they are available. There are some powerful and beneficial Release 2
features which are definitely worth conditional code.

The control flow for such conditional code is always based on whether a particular version of a library is
available. Failure of OpenLibrary() (i.c., return value of NULL) means that the library version requested
is not available. The version number of a library that successfully opened can be checked by testing
LibBase->lib_Version. Always check for a version greater or equal 10 the version you need.

Examples of conditional library checking code:
/* Checking for presence of a new Release 2 library */

if (AslBase = Openlibrary("asl.library", 37L))
{ /* OK to use the ASL requester */ }

else

{ /* Must use a different method */ }
/* Checking version of an existing library with new Release 2 features */
if (GfxBase->1ib Version >= 37) { /* then allow new genlock modes */}

1.3 Compatibility Issues 19

ASL Requesters

The Release 2 ASL library provides standard file and font requesters. Allocation and use of an ASL
requester can be handled by coding a simple subroutine to use the ASL requester if available. Otherwise
use fallback code or a public domain requester. By now, many of you have probably coded your own
requesters and you may be quite attached to them. In that case, at least give your users the option to use the
ASL requester if they wish. By using the ASL requesters, you can provide a familiar interface to your
users, gain the automatic benefit of all ASL file requester improvements, and stop maintaining your own
requester code.

DOS System(), CreateNewProc(), and CON: Enhancements

If your program currently uses the 1.3 AmigaDOS Execute() or CreateProc() functions, then it is
definitely worth conditional code to use their V37 replacements when running under Release 2. The
System() function of Release 2 allows you to pass a command line to AmigaDOS as if it had been typed at
a Shell window. System() can run synchronously with return values or asynchronously with automatic
cleanup and it also sets up a proper stdic environment when passed a DOS filehandle for SYS_Input and
NULL for SYS_Output. In combination with enhanced Release 2 CON: features, System() can provide a
suitable execution environment on either Workbench or a custom screen. The CreateNewProc() function
provides additional control and ease in process creation.

CON: input and output in custom Intuition screens and windows is now supported. New options in the
Release 2 console handler (CON:) provide the ability to open a CON: on any public Intuition screen, or to
attach a CON: to an existing Intuition window. Additional options can add a close gadget or create an
AUTO console window which will only open if accessed for read or write. Add conditional code to use
these system-supported methods when running under Release 2 or later versions of the OS. Note that
additional CON: option keywords can be easily removed under 1.3 at runtime by terminating the CON:
string with NULL after the window title. Consult The AmigaDOS Manual by Bantam Books for additional
information on Release 2 CON: and DOS features.

The Display Database

The Release 2 graphics library and the Enhanced Chip Set (ECS) provide programmable display modes and
enhanced genlock capabilities. Users with Release 2 and ECS may wish to use your application in one of
the newer display modes. The Release 2 display database provides information on all of the display modes
available with the user’s machine and monitor. In addition, it provides useful information on the
capabilities and aspect ratio of each mode (DisplayInfo.Resolution.x and to easily check if particular
modes are available.

The ExtNewScreen structure used with Intuition’s OpenScreen() function allows you to specify new
display modes with the SA_DisplayID tag and a longword ModeID. The Release 2 graphics library
VideoControl() function provides greatly enhanced genlock capabilities for machines with ECS and a
genlock. Little conditional code is required to support these features. See the graphics library chapters and
Autodocs for more information.

20 Amiga ROM Kernel Reference Manual: Libraries

ARexx

Add conditional ARexx capabilities to your program. ARexx is available on all Release 2 machines, and
many 1.3 users have purchased ARexx separately. ARexx capability adds value to your product and allows
users and vertical market developers to create custom and hybrid applications. Add the ability to control
your application externally via ARexx, and internally via ARexx macros. Allow the user to execute ARexx
scripts to control other programs, including the ability to pass information from your program to other
applications. For more information on adding ARexx functionality to your application, se¢ the Amiga
Programmer’s Guide to ARexx, a publication by Commodore Applications and Technical Support (CATS).
Contact your local Commodore support organization for information on ordering this book.

COMPATIBLE LIBRARIES

Compatible libraries provide a third method for using Release 2 while remaining 1.3-compatible. Some
Release 2 libraries are 1.3-compatible and may be distributed with your product if you have a 1.3
Workbench License and an amendment to distribute the additional library.

IFFParse Library

The new IFFParse library is compatible with both Release 2 and the 1.3 version of the OS. IFFParse is a
run-time library which provides low level code for writing, reading, and parsing IFF files. Use of IFFParse
library and the new IFF example code modules can significantly reduce your development and debugging
time. In addition, the IFFParse code modules provide effortless handing of the clipboard device. See the
“‘IFFParse Library’’ chapter in this book and the IFF Appendix of the Amiga ROM Kernel Reference
Manual: Devices for additional information.

Single Precision IEEE Math Libraries

The Release 2 single precision IEEE math libraries are also compatible with 1.3. These libraries provide
single-precision math functions that will use a math coprocessor if available.

Third Party Compatible Libraries

Developers of new code may wish to take advantage of the ease with which a user interface can be created
using the Release 2 GadTools and ASL support librarics. These new libraries are not 1.3-compatible but
there are some third party development efforts towards providing 1.3-compatible versions of them. You
may wish to explore this possibility.

1.3 Compatibility Issues 21

Commodore Applications and Technical Support (CATS)

Commodore maintains a technical support group dedicated to helping developers achieve their goals with
the Amiga. Currently, technical support programs are available to meet the needs of both smaller,
independent software developers and larger corporations. Subscriptions to Commodore’s technical support
publication, Amiga Mail, is available to anyone with an interest in the latest news, Commodore software
and hardware changes, and tips for developers.

To request an application for Commodore’s developer support program, or a list of CATS technical
publications send a self-addressed, stamped, 9" x 12" envelope to:

CATS-Information
1200 West Wilson Drive
West Chester, PA 19380-4231

Error Reports

In a complex technical manual, errors are often found after publication. When errors in this manual are
found, they will be corrected in a subsequent printing. Updates will be published in Amiga Mail,
Commodore’s technical support publication.

Bug reports can be sent to Commodore electronically or by mail. Submitted reports must be clear,
complete, and concise. Reports must include a telephone number and enough information so that the bug
can be quickly verified from your report (i.e., please describe the bug and the steps that produced it).

Amiga Software Engineering Group
ATTN: BUG REPORTS
Commodore Business Machines
1200 Wilson Drive

West Chester, PA 19380-4231
USA

BIX: amiga.com/bug.reports (Commercial developers)
amiga.cert/bug.reports (Certified developers)

amiga.dev/bugs (Others)

USENET: bugs@commodore.COM Or uunet!cbmvax!bugs

22 Amiga ROM Kernel Reference Manual: Libraries

Chapter 2

INTUITION AND THE AMIGA
GRAPHICAL USER INTERFACE

Intuition is the collective name for the function libraries, data structures and other elements needed to create
a graphical interface for Amiga applications. Programmers use Intuition to perform user interface chores
such as opening windows, managing menus, monitoring gadgets, reading the mouse position and so forth.

Newcomers to the Amiga sometimes think of Intuition as the Amiga’s operating system but it is not.
Intuition is just one component that together with Exec, AmigaDOS, and other subsystems make up the
whole operating system. Intuition is the most visible part of the operating system though since it provides
the graphical user interface familiar to all Amiga users.

About User Interfaces

What is a user interface? This sweeping phrase covers all aspects of communication between the user and
the computer. It includes the innermost mechanisms of the computer and rises to the height of defining a
philosophy to guide the interaction between human and machine. Intuition is, above all else, a philosophy
turned into software.

Intuition’s user interface philosophy is simple to describe: the interaction between the user and the
computer should be consistent, simple and enjoyable; in a word, intuitive. Intuition supplies the tools
needed to turn this philosophy into practice.

Implicit in this philosophy is the idea that the user interface should be graphical. A graphical user interface,
or GUI, is a visually oriented method of communicating with a computer in which system resources are
represented by pictorial symbols that can be manipulated with a pointing device such as a mouse. Other
types of user interfaces are possible such as the Amiga’s Shell in which text commands are entered by
typing them at the keyboard. For more information about user interfaces, refer to the Amiga User Interface
Style Guide.

Intuition and the Amiga Graphical User Interface 23

ELEMENTS OF THE AMIGA GRAPHICAL USER INTERFACE SYSTEM

There is more to the Amiga user interface than Intuition. To build a complete user interface, application
writers need to understand these other elements of the system software.

Table 2-1: Elements of the Amiga Graphical User Interface System

System Element Purpose
Intuition The main toolkit and function library for creating a graphical user interface
(GUI) on the Amiga.
Workbench The Amiga file system GUI in which icons represent applications and files.
Preferences A family of editors and configuration files for setting Amiga system options.
BOOPSI Subsystem of Intuition that allows applications to add extensions to Intuition

through object-oriented techniques (Release 2 only).

Gadtools Library A support library for creating Intuition gadgets and menus (Release 2 only).

ASL Library A support library for creating Intuition requesters (Release 2 only).

Icon Library Main library for using Workbench icons.

Workbench Library A support library for Workbench icons and menus (Release 2 only).

Console Device An [/O support module which allows windows to be treated as text-based
virtual terminals.

Graphics Library ~ The main library of rendering and drawing routines.

Layers Library A support library that manages overlapping, rectangular drawing areas which

Intuition uses for windows.

As you read about Intuition in the chapters to follow, you will be introduced to each of these elements of
the Amiga user interface in more detail.

GOALS OF INTUITION

Intuition was designed with two major goals in mind. The first is to give users a friendly and consistent
environment to control the functions of the Amiga operating system and its applications.

The second goal (the big one) is to give application designers a graphical user interface toolkit that manages
all the complexities of sharing the system with other programs that may be running at the same time. Since
the Amiga is a multitasking computer, many programs can reside in memory at the same time sharing the
system’s resources with one another. Programs take turns running so that, from the user’s point of view, it
appears that many programs are running simultaneously.

On a multitasking computer like the Amiga, the user interface design must allow the user to control many

programs with just one monitor, one keyboard, and one mouse. (Imagine driving many cars simultaneously
with one steering wheel.) Intuition supplies the tools needed to solve this problem.

24 Amiga ROM Kernel Reference Manual: Libraries

How the User Sees Intuition

Intuition solves the problem of interacting with multiple programs by dividing the display up into multiple
screens and overlapping windows so that each application has its own work areca. The user sees the Amiga
environment through these windows, each of which can represent a different task or application context.

The user performs operations inside screens and windows with the mouse, a mechanical device that moves
a pointer over the Amiga’s display. The user moves the mouse to position the pointer on graphic symbols
of various objects or actions. Buttons on the mouse are pressed to select or activate the item pointed to.

The user can switch back and forth between different jobs, such as writing a document, drawing an
illustration, printing text, or getting help from the system simply by moving from on¢ window to another
with the mouse. With the mouse, the user can also change the shape and size of application windows,
move them around on the screen, overlap them, bring a window to the foreground, and send a window to
the background. By changing the arrangement of the windows, the user selects which information is visible
and which application to work with next. (Screens may also be moved up or down in the display, and they
can be moved in front of or behind other screens.)

Horkbench 3creen

Figure 2-1: The Workbench Screen With Windows

WORKBENCH AND PREFERENCES

Normally, the Workbench screen (shown above) is the first screen the user sees upon booting the Amiga.
Workbench is a special program supplied with cvery Amiga that gives the user a friendly and consistent
graphic interface to the file system. It’s the default environment the user starts out with.

In Workbench, disks, directories, files and other objects are symbolized by small pictures called icons
which can be manipulated with the mouse. For instance, a program file can be exccuted by pointing to its
icon with the mouse and double-clicking the left mouse button. The Workbench screen is automatically set
up by Intuition and can be easily shared, so many application programs use it t00.

Intuition and the Amiga Graphical User Interface 25

User control of the OS is also supported through Preferences. Preferences is a family of editors and
associated configuration files that allow the user to control the basic set up of the operating system. For
example Printer Preferences sets up all the printer options.

Workbench, together with Preferences, gives the user an easy way to control the OS and launch
applications. These programs are built with the same Intuition tools available to application programmers
giving the whole Amiga system an integrated look and feel. Workbench and Preferences are important
components of the Amiga graphic user interface system and are discussed in greater detail in later chapters.

INTUITION’S 3D LOOK
The Amiga operating system comes in different versions. The latest version, Release 2, contains significant

improvements in the appearance of the Intuition graphical user interface, usually referred to as the 3D Look
of Intuition.

iCale Vi3

[MEBICAkE
LEHHMT

LERFNE

Figure 2-2: An Example of the 3D Look of Intuition

In the new 3D look of Intuition, objects are drawn so that light appears to come from the upper left of the
display with shadows cast to the lower right. Using light and shadow gives the illusion of depth so that
images appear to stand out or recede from the display. By convention, an image with a raised appearance
indicates an object that is available for use or modifiable. An image with a recessed appearance indicates
an object that is unmodifiable, or for display purposes only. Applications should follow the same
conventions.

Release 2 has other improvements over 1.3 (V34) and earlier versions of the operating system. Among

these are new display resolutions, display sizes, and new function libraries to support Intuition. Most of the
examples listed in this book assume Release 2. Where appropriate, the old 1.3 methods are also described.

26 Amiga ROM Kernel Reference Manual: Libraries

How an Application Sees Intuition

Intuition is organized as a library of over 100 functions. Before using an Intuition function you must first
open the Intuition library. (In general, you must always open a library before you can call the functions of
that library. See Chapter 1, "Introduction to Amiga System Libraries".)

COMPONENTS OF INTUITION

The types of data objects that the Intuition library functions create and control fall into six broad categories.
These are the main components an application uses to build and operate a graphic user interface on the
Amiga.

Table 2-2: GUI Components of Intuition

Screens The display environment. Sets the resolution and number of colors.

Windows A graphic rectangle within a screen representing a working context.

Menus A list of choices displayed at the top of a screen that can be selected with the
mouse.

Gadgets A control symbolized by a graphic image that can be operated with the mouse
or keyboard.

Requesters Sub-windows for confirming actions, accessing files and other special options.

Input events Mouse, keyboard or other input activity.

SCREENS AND WINDOWS

As mentioned earlier, Intuition allows multiple programs to share the display by managing a system of
multiple screens and overlapping windows. A screen sets up the display environment and forms the
background that application windows operate in. A window is simply a graphic rectangle that represents a
work context. Each screen can have many windows on it.

Multiple screens and windows give each application its own separate visual context so that many programs
can output graphics and text to the display at the same time without interfering with one another. Intuition
(using the layers library) handles all the details of clipping graphics so they stay inside window bounds and
remembering graphics that go temporarily out of sight when the user rearranges windows.

The keyboard and mouse are shared among applications through a simpler technique: only one application
window at a time can have the input focus. Hence, Intuition ensures that only one window, called the
active window gets to know about keyboard, mouse and other types of input activity.

Each application window is like a virtual terminal or console. Your program will seem to have the entire
machine and display to itself. It can send text and graphics to its terminal window, and ask for input from
any number of sources, ignoring the fact that other programs may be performing these same operations.
Intuition handles all the housekeeping. In fact, your program can open several of these virtual terminals and
treat each one as if it were the only program running on the machine. Intuition will keep track of all the
activity and make sure commands and data are dispatched to the right place.

Intuition and the Amiga Graphical User Interface 27

GADGETS, MENUS AND REQUESTERS

Intuition screens and windows provide an orderly way for multiple programs to share the display and input
devices. Each application also needs a method for the user to send commands to it and select its options.
Intuition supplies gadgets, menus and requesters for this purpose.

Gadgets

A gadget is an application control symbolized by a graphic image that can be operated with the mouse or
keyboard. The imagery used for a gadget could look like a switch, a knob, a button, or just about anything.
Intuition supplies some pre-fabricated gadgets, called system gadgets, for controlling window and screen
arrangements. Other gadget types allow the user to select colors, enter text or numbers, and perform other
simple operations.

Figure 2-3: An Intuition Window with Gadgets

Most of the user’s input for a typical Intuition application will be obtained with gadgets. Gadgets are
discussed in detail in Chapter 5, *‘Intuition Gadgets™. Additional information on programming gadgets for
Release 2 of the operating system can be found in Chapter 15, ‘‘GadTools Library’’.

28 Amiga ROM Kernel Reference Manual: Libraries

Menus

Intuition also supplies a menu system for accepting commands and options from the user. A menu is a list
of choices displayed at the top of the screen from which the user can select with the mouse. Each screen
has one menu bar that all application windows operating on the screen share. Whichever window is active
controls what appears in the menu bar.

Menu Name Menu Bar

Menu Item Sub-Menu
Menu

Figure 2-4: An Intuition Menu

The current set of menu choices can always be brought into view by pressing the right mouse button (the
menu button) thus providing the user with a familiar landmark even in unfamiliar applications. Menus
allow the user to browse through the possible set of actions that can be performed giving an outline-like
overview of the functions offered by a program.

Menus are discussed in detail in Chapter 6, ‘‘Intuition Menus’’. Additional information on programming
menus for Release 2 of the operating system can be found in Chapter 15, ‘‘GadTools Library’’.

Intuition and the Amiga Graphical User Interface 29

Requesters

Gadgets and menus do much of the work of getting commands and option choices from the user.
Sometimes though, an application needs to get further information from a user in response to a command
which has already been initiated. In that case, a requester can be used. A requester is a temporary sub-
window, usually containing several gadgets, used to confirm actions, access files, or adjust the special
options of a command the user has already given.

Figure 2-5: An Intuition Requester

Requesters are discussed in detail in Chapter 7, ‘‘Intuition Requesters and Alerts’’. Additional information
on programming requesters for Release 2 of the system can be found in Chapter 16, “‘ASL Library’’.

The Intuition Input Event Loop

Once an application has set up the appropriate screen, window, gadgets menus and requesters, it waits for
the user to do something. Intuition can notify an application whenever user activity occurs by sending a
message. The message is simply a pointer to some memory owned by Intuition that contains an
IntuiMessage data structure describing the user activity that occurred.

To wait for user activity or other cvents, the Exec library provides a special function named Wait(). The
Exec Wait() function suspends your task allowing other applications or system tasks to run while your
application is waiting for input or events from Intuition and other sources.

Thus, the basic outline for any Intuition program is:

o Set up the window, screen and any required gadgets, menus or requesters.

o Wait() for a message from Intuition about user activity or other events.
Copy needed data from the message and tell Intuition you received it by replying.
Look at the data and take the appropriate action.

0 Repeat until the user wants to quit.

These steps, sometimes referred to as the Intuition input event loop are basically the same for any Intuition
application.

30 Amiga ROM Kernel Reference Manual: Libraries

As you might expect, Intuition can send a message to your application whenever the user presses a key on
the keyboard or moves the mouse. Other types of input events Intuition will notify you about include
gadget hits, menu item selection, time elapsing, disk insertion, disk removal, and window rearrangement.

Gadgets, menus, requesters are the nuts and bolts of the Intuition GUI toolkit. Much of the code in an
application that uses Intuition deals with the set up and operation of these important data objects. No
matter how simple, complex, or fanciful your program design, it will fit within the basic Intuition
framework of windows and screens, gadgets, menus and requesters. The users of the Amiga understand
these basic Intuition elements and trust that the building blocks remain constant. This consistency ensures
that a well-designed program will be understandable to the naive user as well as to the sophisticate.

A Simple Intuition Program

The sample Intuition program that follows shows all of the basic requirements for an Intuition application.
There are three important points:

o You must open the Intuition library before you can use the Intuition functions. Certain languages such
as C require the pointer to the Intuition library to be assigned to a variable called IntuitionBase (sce
Chapter 1 for more about this).

@ When you set up a window, you also specify the events that you want to know about. If the user
performs some activity that triggers one of the events you specified, Intuition signals you and sends a
message. The message is a pointer to an IntuiMessage data structure that describes the event in more
detail. Messages about Intuition events are sent to a MsgPort structure which queues up the messages
for you in a linked list so that you may respond to them at your convenience.

o Resources must be returned to the system. In this case, any windows, screens or libraries that were
opened are closed before exiting.

EXAMPLE INTUITION EVENT LOOP

The Intuition event loop used in the example is very simple. The example first sets up a custom screen,
opens a window on it, then waits for Intuition to send messages about user input with the following event
loop:

winsignal = 1L << windowl->UserPort->mp SigBit; /* window signal */
signalmask = winsignal; /* example only waits for window events */

while(!done) {
signals = Wait (signalmask);
if (signals & winsignal)
done = handleIDCMP (windowl) ;

Intuition sends messages about user activity to a special port known as the IDCMP. Each window can have
its own IDCMP (in the code above the IDCMP is windowl->UserPort). To wait for event messages to
arrive at the IDCMP port, the example code calls the Exec Wait() function. It then processes and replies to
any event messages that it gets in a subroutine named handleIDCMP(). For this example, the only event
Intuition will report is the close window event. When the example detects this event, it closes the window,
closes the screen, closes the Intuition library and exits. Event loops similar to this one are used in Intuition
examples throughout this book. For more information about IDCMP and user input, see the chapters on
““‘Intuition Windows’’ and ‘‘Intuition Input and Output’’.

Intuition and the Amiga Graphical User Interface 31

INTUITION EXAMPLE (V36 AND LATER)

This example shows a simple Intuition program that works with Release 2 (V36) and later versions of the
Amiga operating system.

/* easyintuition37.c -- Simple Intuition program for V37 */
/* (Release 2) and later versions of the operating system. */
/* Compiled with Lattice C v5.04: lc -L easyintuition37.c */

#include <exec/types.h> /* The Amiga data types file. */
#include <intuition/intuition.h> /* Intuition data strucutres, etc. */
#include <graphics/displayinfo.h> /* Release 2 Amiga display mode ID’s */
#include <libraries/dos.h> /* Official return codes defined here */
#include <clib/exec_protos.h> /* Exec function prototypes */
#include <clib/intuition_protos.h> /* Intuition function prototypes */

/* Force use of new variable names to help prevent errors */
#define INTUI_V36_NAMES_ ONLY

#ifdef LATTICE /* Disable Ctrl-C handling in SAS/C */
int CXBRK (void) {return(0);}

void chkabort (void) {return;}

#endif

/* Use lowest non-obsolete version that supplies the functions needed. */
#define INTUITION_REV 37

/* Declare the prototypes of our own functions. Prototypes for system */
/* functions are declared in the header files in the clib directory. */
VOID cleanExit(struct Screen *, struct Window *, LONG);

BOOL handleIDCMP(struct Window *);

struct Library *IntuitionBase = NULL;

/* Position and sizes for our window */
#define WIN_LEFTEDGE 20

#define WIN_TOPEDGE 20
#define WIN WIDTH 400
#define WIN MINWIDTH 80
#define WIN_HEIGHT 150

#define WIN MINHEIGHT 20

VOID main(int argc, char *argv[])
{
/* Declare variables here */
ULONG signalmask, winsignal, signals;
BOOL done = FALSE;
UWORD pens{]={-0};

struct Screen *screenl = NULL;
struct Window *windowl = NULL;

/* Open the Intuition Library */

IntuitionBase = OpenLibrary("intuition.library", INTUITION REV };

if (IntuitionBase == NULL) -
cleanExit (screenl, windowl, RETURN_WARN);

/* Open any other required libraries and make */
/* any assignments that were postponed above */

/* Open the screen */

screenl = OpenScreenTags (NULL,
SA_Pens, (ULONG) pens,
SA DisplayID, HIRES_KEY,
SA_Depth, 2,
SA Title, (ULONG)"Our Screen",
TAG_DONE) ;

if (screenl == NULL)
cleanExit (screenl, windowl, RETURN_WARN) ;

/* ... and open the window */

32 Amiga ROM Kernel Reference Manual: Libraries

windowl = OpenWindowTags (NULL,
/* Specify window dimensions and limits */

WA Left, WIN_LEFTEDGE,
WA_Top, WIN TOPEDGE,
WA _Width, WIN_WIDTH,
WA_Helght, WIN_HEIGHT,
WA_MinWidth, WIN_MINWIDTH,
WA_MinHeight, WIN_MINHEIGHT,
WA_MaxWidth, -0,
WA_MaxHeight, -0,

/* Specify the system gadgets we want */
WA_CloseGadget, TRUE,
WA_SizeGadget, TRUE,
WA_DepthGadget, TRUE,

WA_DragBar, TRUE,
/* Specify other attributes */
WA_Activate, TRUE,

WA_NoCareRefresh, TRUE,

/* Specify the events we want to know about */
WA_IDCMP, IDCMP_CLOSEWINDOW,

/* Attach the window to the open screen ...*/
WA_CustomScreen, screenl,
WA_Title, “EasyWindow",
WA_ScreenTitle, "Our Screen - EasyWindow is Active",
TAG_DONE) ;
if (windowl == NULL)
cleanExit (screenl, windowl, RETURN_WARN);

/* Set up the signals for the events we want to hear about ... */
winsignal = 1L << windowl->UserPort->mp_SigBit; /* window IDCMP */
signalmask = winsignal; /* we are only waiting on IDCMP events */

/* Here’s the main input event loop where we wait for events. */
/* We have asked Intuition to send us CLOSEWINDOW IDCMP events *x/
/* Exec will wake us if any event we are waiting for occurs. */

while(!done)
{
signals = Wait (signalmask);

/* An event occurred - now act on the signal(s) we received.*/

/* We were only waiting on one signal (winsignal) in our */
/* signalmask, so we actually know we received winsignal. */
if(signals & winsignal)
done = handleIDCMP (windowl); /* done if close gadget */
}
cleanExit (screenl, windowl, RETURN_OK); /* Exit the program */

}

BOOL handleIDCMP(struct Window *win)

{
BOOL done = FALSE;
struct IntulMessage *message = NULL;
ULONG class;

/* Examine pending messages */
while(message = (struct IntuiMessage *)GetMsg(win->UserPort))
{

class = message->Class; /* get all data we need from message */

/* When we’re through with a message, reply */
ReplyMsg((struct Message *)message);

/* See what events occurred */
switch(class)
{
case IDCMP_CLOSEWINDOW:
done = TRUE;
break;
default:
break;
}
}

return(done);

Intuition and the Amiga Graphical User Interface 33

VOID cleanExit (struct Screen *scrn, struct Window *wind, LONG returnValue)

{
/* Close things in the reverse order of opening */
if (wind) CloseWindow(wind); /* Close window if opened */
if (scrn) CloseScreen(scrn); /* Close screen if opened */

/* Close the library, and then exit */
if (IntuitionBase) Closelibrary(IntuitionBase);
exit (returnvValue);

INTUITION EXAMPLE (ALL VERSIONS)

Here’s the same example as above written for both Release 2 and earlier versions of the operating system.
The main difference here is that this example avoids using any new Release 2 functions, but does pass
extended structures to the older Intuition functions so that some new Release 2 features may be accessed in
a backward-compatible manner.

/* easyintuition.c Simple backward-compatible V37 Intuition example */
/* */
/* This example uses extended structures with the pre-V37 OpenScreen() */
/* and OpenWindow () functions to compatibly open an Intuition display. */
/* Enhanced V37 options specified via tags are ignored on 1.3 systems. */
/* Compiled with Lattice C v5.10: lc -L easyintuition.c */

/* Force use of new variable names to help prevent errors */
#define INTUI_V36_ NAMES ONLY

#include <exec/types.h> /* The Amiga data types file. */
#include <intuition/intuition.h> /* Intuition data strucutres, etc. */
#include <libraries/dos.h> /* Official return codes defined here */
#include <clib/exec_protos.h> /* Exec function prototypes */
#include <clib/intuition protos.h> /* Intuition function prototypes */
#ifdef LATTICE /* Disable Ctrl-C handling in SAS/C */

int CXBRK(void) {return(0);}
void chkabort (void) {return;}
#endif

/* Use lowest non-obsolete version that supplies the functions needed. */
#define INTUITION_REV 33L

/* Declare the prototypes of our own functions. Prototypes for system */
/* functions are declared in the header files in the clib directory */
VOID cleanExit(struct Screen *, struct Window *, LONG });

BOOL handleIDCMP(struct Window *);

struct Library *IntuitionBase = NULL;

/* We can specify that we want the V37-compatible 3D look when
* running under V37 by adding an SA Pens tag.

*/
WORD pens[] = {~0}; /* empty pen array to get default 3D look */
struct TagItem ourscreentags(] = {

{ SA_Pens, (ULONG)pens },
{ TAG_DONE }};

/* ExtNewScreen is an extended NewScreen structure.
* NS_EXTENDED flags that there is a tag pointer to additional
* tag information at the end of this structure. The tags will
* be parsed by Release 2 but ignored by earlier 0OS versions.
*/

struct ExtNewScreen fullHires =

{

0, /* LeftEdge must be zero prior to Release 2 */
0, /* TopEdge */

640, /* Width (high-resolution) */

STDSCREENHEIGHT, /* Height (non-interlace) */

2, /* Depth (4 colors will be available) */

0,1, /* Default DetailPen and BlockPen */

34 Amiga ROM Kernel Reference Manual: Libraries

/*

HIRES, /* the high-resolution display mode */
CUSTOMSCREEN | NS_EXTENDED, /* the screen type */

NULL, /* no special font */

"Our Screen", /* the screen title */

NULL, /* no custom screnn gadgets (not supported) */
NULL, /* no CustomBitMap */

ourscreentags /* tags for additional V37 features */

bi

Position and sizes for our window */

#define WIN_LEFTEDGE 20
#define WIN_TOPEDGE 20

#define WIN_WIDTH 400
#define WIN_ MINWIDTH 80
#define WIN_HEIGHT 150

#define WIN_MINHEIGHT 20

/* Under V37, we’ll get a special screen title when our window is active */
UBYTE activetitle[] = {"Our Screen - EasyWindow is Active"};
struct Tagltem ourwindowtags[] = {

/*
*
*
*

*/

{ WA_ScreenTitle, (ULONG)&activetitle[O] },
{ TAG_DONE }};

ExtNewWindow is an extended NewWindow structure.
NW_EXTENDED indicates that there is a tag pointer to additional tag
information at the end of this structure. The tags will be parsed
by Release 2 but ignored by earlier OS versions.

struct ExtNewWindow easyWindow =

{

WIN_LEFTEDGE,

WIN_TOPEDGE,

WIN_WIDTH,

WIN_HEIGHT,

-1,-1, /* Means use the screen’s Detail and Block pens */

IDCMP_CLOSEWINDOW, /* This field specifies the events we want to get */

/* These flags specify system gadgets and other window attributes */
/* including the EXTENDED flag which flags this as an ExtNewWindow */
WFLG_CLOSEGADGET | WFLG_SMART_ REFRESH | WFLG_ACTIVATE | WFLG_DRAGBAR |
WFLG_DEPTHGADGET | WFLG_SIZEGADGET | WFLG_NOCAREREFRESH |
WFLG_NW_EXTENDED,

NULL, /* Pointer to the first gadget */
NULL, /* No checkmark. */
"EasyWindow", /* Window title. */
NULL, /* Attach a screen later. */
NULL, /* Let Intuition set up BitMap */
WIN _MINWIDTH, /* Minimum width. */
WIN_MINHEIGHT, /* Minimum height. */

-1, /* Maximum width (screen size) */
-1, /* Maximum height (screen size) */
CUSTOMSCREEN, /* A screen of our own. */
ourwindowtags /* tags for additional V37 features */

bi

VOID main(int argc, char *argv([])

{

/* Declare variables here */

ULONG signalmask, winsignal, signals;
BOOL done = FALSE;
struct Screen *screenl
struct Window *windowl

I

NULL;
NULL;

/* Open Intuition Library. NOTE - We are accepting version 33 (1.2)
* or higher because we are opening our display in a compatible manner.
* However - If you add to this example, do NOT use any NEW V37
* functions unless IntuitionBase->lib Version is >= 37
*/
IntuitionBase = OpenLibrary("intuition.library", INTUITION_REV);
if (IntuitionBase == NULL)
cleanExit (screenl, windowl, RETURN_WARN);

Intuition and the Amiga Graphical User Interface 35

/* Open any other required libraries and make */
/* any assignments that were postponed above */

/* Open the screen */
screenl = OpenScreen(&fullHires);
if (screenl == NULL)
cleanExit (screenl, windowl, RETURN_WARN);

/* Attach the window to the open screen ... */
easyWindow.Screen = screenl;

/* ... and open the window */
windowl = OpenWindow (&easyWindow) ;
if (windowl == NULL)
cleanExit (screenl, windowl, RETURN_WARN);

/* Set up the signals for the events we want to hear about ... */
winsignal = 1L << windowl->UserPort->mp SigBit; /* window IDCMP */
signalmask = winsignal; /* we will only wait on IDCMP events */
/* Here’s the main input event loop where we wait for events. x/
/* We have asked Intuition to send us CLOSEWINDOW IDCMP events */
/* Exec will wake us if any event we are waiting for occurs. */

while(!done)
{

signals = Wait (signalmask);

/* An event occurred - now act on the signal(s) we received.*/

/* We were only waiting on one signal (winsignal) in our */
/* signalmask, so we actually know we received winsignal. */
if(signals & winsignal)
done = handleIDCMP (windowl); /* done if close gadget */
}
cleanExit (screenl, windowl, RETURN OK); /* Exit the program *x/

BOOL handleIDCMP(struct Window *win)
{
BOOL done = FALSE;
struct IntuiMessage *message;
ULONG class;

/* Examine pending messages */
while(message = (struct IntuiMessage *)GetMsg(win->UserPort))
{

class = message->Class; /* get all data we need from message */

/* When we’re through with a message, reply */
ReplyMsg((struct Message *)message);

/* See what events occurred */
switch(class)
{
case IDCMP_CLOSEWINDOW:
done = TRUE;
break;
default:
break;
}
}

return(done);

VOID cleanExit (struct Screen *scrn, struct Window *wind, LONG returnValue)
{

/* Close things in the reverse order of opening */

if (wind) CloseWindow(wind); /* Close window if opened */

if (scrn) CloseScreen(scrn); /* Close screen if opened */

/* Close the library, and then exit */

if (IntuitionBase) CloseLibrary(IntuitionBase);
exit (returnvalue);

36 Amiga ROM Kernel Reference Manual: Libraries

Chapter 3
INTUITION SCREENS

Intuition screens are the basis of any display Intuition can make. Screens determine the fundamental
characteristics of the display such as the resolution and palette and they set up the environment for multiple,
overlapping windows that makes it possible for each application to have its own separate visual context.
This chapter shows how to use existing screens and how to create new screens.

Types of Screens

Screens are important because they determine the basic resolution and maximum number of colors in the
display. Once a screen is set up, these attributes cannot be changed so any graphics work done on a given
screen is restricted to that screen’s resolution and number of colors. Hence, the type of screen used is a
basic design decision.

With Intuition screens, a video display can be created in any one of the many Amiga display modes. The
basic parameters of the video display such as resolution, total size, frame rate, genlock compatibility,
support of screen movement and number of colors are defined by these modes. There are currently four
basic modes available on all Amiga models. These basic modes work with conventional monitors (15 kHz
scan rate) and older versions of the operating system.

Basic Amiga Resolution Maximum Supports
Display Modes NTSC PAL Colors HAM/EHB*
Lores 320x200 320x256 32 of 4096 Yes
Lores-Interlaced 320x400 320x512 32 of 4096 Yes
Hires 640x200 640x256 16 of 4096 No
Hires-Interlaced 640x400 640x512 16 of 4096 No

*HAM and EHB modes provide for additional colors with some restrictions.

Table 3-1: Basic Amiga Display Modes

With Release 2 of the operating system, many other display modes are available (these usually require a
special monitor or ECS). All these display modes, including the specialized modes, are integrated through
the graphics library display database. See the ‘‘Graphics Primitives’” chapter for a complete list of all
Amiga display modes.

Intuition Screens 37

MULTIPLE SCREENS

All Intuition display objects (such as windows and menus) take graphical characteristics from the screen.
These objects are restricted to the same resolution and maximum number of colors as the screen they
operate in. Other characteristics such as the palette, pens and fonts are inherited from the screen (but may
be changed on a case by case basis).

This is not too much of a restriction because the Amiga can maintain multiple screens in memory at the
same time. In other words, one application can use a high resolution screen (with 16 colors) while another
application uses a low resolution screen (with 32 colors) at the same time. Screens typically take up the
entire viewing area so only one is usually visible. But screens can be moved up and down or rearranged
allowing the user (or application) to move between screens easily.

PUBLIC SCREENS AND CUSTOM SCREENS

An application may choose to usc an existing screen or to create its own screen. For instance, the normal
Amiga startup process opens the Workbench screen (Workbench is the Amiga’s default user interface).
Any application is free to usc the Workbench screen instead of opening a new one. Screens that can be
shared this way are called public screens.

Public screens are a new feature of Release 2 (V36). In older versions of the OS, only the Workbench
screen could be shared. Now any screen may be set up as a public screen so that other applications may use
it.

The use of an existing public screen, like the Workbench screen, requires little effort by the application and
does not use up any memory. However, using Workbench or another existing public screen means some
flexibility is lost; the resolution, maximum number of colors and other attributes are already set. If the
application cannot function under these limitations, it may open its own custom screen.

Custom screens allow for complete control of the display space so an application can get exactly the kind of
display it wants. However, since creating a new, custom screen uses up memory, they should only be used
when there are no suitable public screens available.

Owners of a custom screen can keep their screen private, or they may allow other applications to share their
screen by registering the screen with the operating system as a public screen. See the section on ‘‘Public
Screen Functions’’ later in this chapter for more about public screens and Workbench.

SCREEN COMPONENTS

Screens have very little visual impact, they simply provide a resolution specific area to place other objects
such as windows and menus. Screens have no borders. Only the title bar marks the screen limits
(specifying the left and top edges, and the width of the screen), and the title bar may be hidden, or obscured
by graphics or windows.

The title bar also serves as the menu bar when the user presses the menu button on the mouse. The menu
bar area is shared by all applications operating within the screen.

38 Amiga ROM Kernel Reference Manual: Libraries

Within the title bar, there are two gadgets: a screen drag gadget and a depth-arrangement gadget. The
screen drag gadget allows the screen to be moved up and down. The depth-arrangement gadget allows the
screen to be placed in front or behind all other screens.

Drag Bar Depth Gadget

\ \

LU= Cl Horkbench Screen

Figure 3-1: An Intuition Screen (Workbench)

Screens are always rectangular, and the areas at the sides and bottom of the display that are not within the
screen’s limits are filled with the background color. The area above all visible screens is filled with the
background color of the highest screen. These areas surrounding the screen (normally unused) are known
as the overscan area. The Amiga display system allows the overscan area to be used for graphics under
special circumstances (see the section on ‘Overscan and the Display Clip’’ later in this chapter).

Screen Data Structures

The Amiga uses color registers and bitplane organization as its internal representation of display data.
Screens require a color table and display raster memory for each bitplane. This is the memory where
imagery is rendered and later translated by the hardware into the actual video display. This information is
contained in data structures from the Amiga’s graphics library.

A ViewPort is the main data structure used by the graphics library to represent a screen. Pointers to each
of the screen’s bitplanes are stored in the graphics library BitMap structure. Color table information is
stored in a graphics structure called a ColorMap. And the screen’s drawing and font information is stored
in the RastPort structure.

The graphics RastPort structure is a general-purpose handle that the graphics library uses for drawing
operations. Many Intuition drawing functions also take a RastPort address as a parameter. This makes
sense since the RastPort structure contains drawing variables as well as a pointer to the BitMap telling
where to draw. See the ‘‘Graphics Primitives’” chapter for more information on these structures and how
they are used.

Intuition Screens 39

THE INTUITION SCREEN DATA STRUCTURE

The structures mentioned above are unified along with other information in Intuition’s Screen data
structure defined in the include file <intuition/screens.h>. Notice that the Screen structure contains
instances of a ViewPort, RastPort and BitMap.

struct Screen
{
struct Screen *NextScreen;
struct Window *FirstWindow;
WORD LeftEdge, TopEdge, Width, Height;
WORD MouseY, MouseX;
UWORD Flags;
UBYTE *Title, *DefaultTitle;
BYTE BarHeight, BarVBorder, BarHBorder, MenuVBorder, MenuHBorder;
BYTE WBorTop, WBorLeft, WBorRight, WBorBottom;
struct TextAttr *Font;
struct ViewPort ViewPort;
struct RastPort RastPort;
struct BitMap BitMap;
struct Layer Info LayerInfo;
struct Gadget *FirstGadget;
UBYTE DetailPen, BlockPen;
UWORD SaveColorO;
struct Layer *Barlayer;
UBYTE *ExtData, *UserData;
i

In general, applications don’t need to access the fields in the Screen structure directly; they use Intuition
functions to manipulate the screen instead. Likewise, applications do not set up the Screen themselves;
they use one of the OpenScreen() calls (see below). Here is a description of some of the more interesting
members of the Screen structure (it is not meant to be a complete description of all the fields).

LeftEdge, TopEdge
The LeftEdge and TopEdge variables give the position of the screen relative to the upper left corner
of the monitor’s visible display (as set by the user in the Overscan preferences editor). If it is
positioned down or to the right, the values are positive. If the screen is positioned up or to the left, the
values are negative. The values are in screen resolution pixels. In systems prior to V36, LeftEdge
positioning is ignored and negative TopEdge positions are illegal.

The screen position may be set when the screen is opened or later by calling the MoveScreen()
function. Note that the screen’s actual display position may not exactly equal the coordinates given in
the LeftEdge and TopEdge ficlds of the Screen structure. This can cause a window which is opened
in the visible part of the screen to be incorrectly positioned by a few pixels in each direction. This
complication is due to hardware constraints that limit the fineness of screen positioning. For instance,
high resolution screens can only be positioned in low resolution pixel coordinates, yet the values in the
LeftEdge and TopEdge use high resolution pixel coordinates. So when the screen is displayed, its
position is rounded to a position available for the monitor.

MouseX, MouseY
Position of the mouse with respect to the upper left corner of the screen.

ViewPort, RastPort, BitMap, LayerInfo
Actual instances of the graphics library data structures associated with this screen (not pointers to
structures). For normal use of custom screens, these structures may be ignored.

BarLayer
A pointer to the Layer structure for the screen’s title bar.

40 Amiga ROM Kernel Reference Manual: Libraries

WBorTop, WBorLeft, WBorRight, WBorBottom
Window border values, see the ‘Intuition Windows’’ chapter for information on pre-calculating the
size of window borders for windows that open in this screen.

Font
The default screen font, this can be used to pre-calculate the size of the window borders for windows
that open in this screen.

UserData
Free for application use.

Other Screen structure members provide information on the title bar layer, and attributes of menus and

windows opened in the screen. Of particular interest are the values that allow precalculation of window
border size. These variables will be discussed in the chapter ‘‘Intuition Windows™’.

OTHER SCREEN DATA STRUCTURES

In addition to the Screen structure, Intuition uses some other supporting structures defined in the include
file <intuition/screens.h> and in <utility/tagitems.h>. (Sec the Amiga ROM Kernel Reference Manual:
Includes and Autodocs for a complete listing.)

Table 3-2: Data Structures Used with Intuition Screens

Structure Name Description Defined in Include File

Screen Main Intuition structure that defines a screen (see <intuition/screens.h>
above)

DrawlInfo Holds the screen’s pen, font and aspect data for <intuition/screens.h>
Intuition

Tagltem General purpose parameter structure used to set up <utility/tagitem.h>
screens in V36

NewScreen Parameter structure used to create a screen in V34 <intuition/screens.h>

ExtNewScreen An extension to the NewScreen structure used in <intuition/screens.h>
V37 for backward compatibility with older systems

As previously mentioned, there is an Intuition Screen structure (and a corresponding graphics ViewPort)
for every screen in memory. Under Release 2, whenever a new screen is created, Intuition also creates an
auxiliary data structure called a DrawInfo.

The Drawlnfo structure is similar to a RastPort in that it holds drawing information. But where a
RastPort is used at the lower graphics level, the DrawInfo structure is used at the higher Intuition level.
Specifically, DrawInfo contains data needed to support the New Look of Intuition in Release 2. (See the
section below, ‘‘DrawInfo and the 3D Look’’, for more information.)

Another new feature of Release 2 is tag items. A Tagltem is a general purpose parameter structure used to
pass arguments to many of the functions in the Release 2 system software. Each tag consists of a LONG
tag ID (ti_Tag) and a LONG tag data value (ti_Data). With screens, tag items are used to describe the
attributes an application wants for a new, custom screen. Tag items replace the NewScreen structure, the
set of parameters used in older versions of the OS to set up a screen.

Intuition Screens 41

Applications may wish to use tag items to set up a new screen instead of the NewScreen structure since tag
items are often more convenient. For the sake of backwards compatibility, the ExtNewScreen structure is
available. ExtNewScreen combines the NewScreen method used to define screens in older versions of the
OS with the tag item method used in Release 2. The examples listed in the next section show how these
various data structures can be used to set up a new screen.

Custom Screen Functions

All applications require a screen to work in. This can be an existing, public screen or a new, custom screen
created by the application itself. To create a new, custom screen to work with, you call OpenScreen() or
one of its variants.

Table 3-3: Custom Screen Functions

OpenScreenTags() Create a new, custom screen from a tag list. Use either one
OpenScreenTagList() of these with Release 2 (V36) or later versions of the OS.
OpenScreen() Create a new, custom screen from an ExtNewScreen structure.

Use this if your application must be compatible with 1.3 (V34)
or earlier versions of the operating system.

CloseScreen() Close a custom screen and free the memory it used.

CREATING A NEW CUSTOM SCREEN

There are three functions you can use to open a custom screen: OpenScreen(), OpenScreenTags() or
OpenScreenTagList(). Prior to Release 2 (V36), OpenScreen() was used to create a new screen. With
V36 and later versions of the operating system, this call is superseded by OpenScreenTagList() and
OpenScreenTags().

struct Screen *OpenScreen(struct NewScreen *)
struct Screen *OpenScreenTagList (struct NewScreen * , struct Tagltem *)
struct Screen *OpenScreenTags(struct NewScreen *, ULONG, ULONG, ...)

The old OpenScreen() call relied on a fixed size data structure (NewScreen) which made little allowance
for extensions and growth. The new calls are tag based, allowing for the addition of new features without
modification of existing structures and applications. The ‘‘Screen Attributes’’ section below contains a
complete list of all the tag options available for setting up an Intuition screen. For a general description of
tag items, see the ‘‘Utility Library’’ chapter.

A Custom Screen Example

There are so many tag options available with screens it can be a bit overwhelming. Before discussing more
details, it may be helpful to look at a simple example. The code below opens a new, custom screen using
the OpenScreenTags() call. The example uses just two tag items (SA_Depth and SA_Pens) which provide
the minimum attributes needed to make a screen that uses the new 3D look of Intuition available in Release
2. (See the section on ‘‘DrawInfo and the 3D Look’’ below for more information.)

42 Amiga ROM Kernel Reference Manual: Libraries

/* newlookscreen.c

** open a screen with the "new look".
* %

** SAS/C 5.10a

** 1c -bl -cfist -v -y newlookscreen
** blink LIB:c.o newlookscreen.o TO newlookscreen LIB LIB:lc.lib LIB:amiga.lib
*/

#define INTUI_V36_NAMES_ONLY

#include <exec/types.h>

#include <intuition/intuition.h>
#include <intuition/screens.h>
#include <clib/exec_protos.h>
#include <clib/dos_protos.h>
#include <clib/intuition_protos.h>

#ifdef LATTICE

int CXBRK (void) { return(0); } /* Disable Lattice CTRL/C handling */
int chkabort (void) { return(0); } /* really */
#endif

struct Library *IntuitionBase;

/* Simple routine to demonstrate opening a screen with the new look.

** Simply supply the tag SA_Pens along with a minimal pen specification,
** Intuition will fill in all unspecified values with defaults.

** Since we are not supplying values, all are Intuition defaults.

*/

VOID main(int argc, char **argv)

{

UWORD pens([] = { ~0 };

struct Screen *my_screen;

IntuitionBase = OpenLibrary("intuition.library",0};
if (NULL != IntuitionBase)

{
if (IntuitionBase->1ib Version >= 37)

{

/* The screen is opened two bitplanes deep so that the

** new look will show-up better.

*/

if (NULL != (my_screen = OpenScreenTags (NULL,
SA_Pens, (ULONG)pens,
SA_Depth, 2,
TAG_DONE))}

{

/* screen successfully opened */
Delay (30L); /* normally the program would be here */

CloseScreen (my_screen);
}
}

Closelibrary(IntuitionBase);

}

The example above runs only under Release 2 (V36) and later versions of the OS. To make a custom
screen that works under both Release 2 and earlier versions of the operating system, use the original
OpenScreen() function.

The NewScreen structure used with OpenScreen() has been extended with a tag list in V36 to form an
ExtNewScreen. This is done by setting the NS_EXTENDED bit in the Type field of the NewScreen
structure and adding a pointer to an array of tags to the end of the structure. The NS_EXTENDED bit is
ignored in older versions of the operating system, so the tags can be transparently added to existing
applications and the features will appear when executed in a system running V36 or greater. See the
OpenScreen() Autodocs and the include file <intuition/screens.h> for more information on
NS_EXTENDED and the ExtNewScreen structure.

Intuition Screens 43

Creating A Custom Screen that Works With Older Systems

Here’s an example of how to use the old OpenScreen() call with an ExtNewScreen structure to make a
new, custom screen under any version of the Amiga operating system. If the version is V36 or later,
additional Release 2 features specified via tags, in this case the new 3D look of Intuition, will be
incorporated in the window.

;/* screen34to37.c - Execute me to compile me with SAS 5.10

LC -bl -cfistq -v -y -3j73 screen34to37.c
blink FROM LIB:c.o screen34to37.o TO screen34to37 LIB LIB:lc.lib LIB:amiga.lib

quit

*/

#define INTUI_V36_NAMES_ONLY /* We’ll use the newer Intuition names. */
#include <exec/types.h> /* Amiga data types. */
#include <intuition/intuition.h> /* Lots of important Intuition */
#include <intuition/screens.h> /* structures we will be using. */
#include <clib/exec_protos.h> /* Function prototypes */

#include <clib/dos_protos.h>
#include <clib/intuition_protos.h>

#ifdef LATTICE

int CXBRK (void) { return(0); } /* Disable Lattice CTRL/C handling */
int chkabort (void) { return(0); } /* really */

#endif

struct Library *IntuitionBase; /* Intuition library base */

/* Simple example to show how to open a custom screen that gives the new look

Attach the tag SA_Pens and a minimal pen specification to ExtNewScreen,
and call the old OpenScreen() function. The tags will be ignored by
V34 and earlier versions qf the 0S. 1In V36 and later the tags are
accepted by Intuition.

*
* under V37, yet still works with older version of the operating system.
*

*
*
*
*x/
VOID main(int argc, char **argv)

{

UWORD pens(] = { ~0 }; /* This is the minimal pen specification*/
struct Screen *my_screen; /* Pointer to our new, custom screen */
struct ExtNewScreen myscreen_setup; /* Same as NewScreen with tags attached */
struct TagItem myscreen_tags({2]);/* A small tag array */

/* Open the library before you call any functions */
IntuitionBase = Openlibrary ("intuition.library",0);
if (NULL != IntuitionBase)
{
/* Fill in the tag list with the minimal pen specification */
myscreen_tags[0].ti_Tag=SA Pens;
myscreen_tags({0].ti_Data=(ULONG) pens;
myscreen_tags(l].tl Tag=TAG_DONE;

/* The screen is opened two bitplanes deep so that the
** new look will show-up better.

tﬁ/

myscreen_ setup.LeftEdge=0;

myscreen_setup.TopEdge=0;

myscreen_setup.Width=640; /* Smaller values here reduce */
myscreen_setup.Height=STDSCREENHEIGHT; /* drawing area and save memory.*/
myscreen_setup.Depth=2; /* Two planes means 4 colors. */
myscreen_setup.DetailPen=0; /* Normal V34 pen colors. */

myscreen_setup.BlockPen=1;

myscreen_setup.ViewModes=HIRES;

myscreen_setup.Type=CUSTOMSCREEN | NS_EXTENDED; /* Extended NewScreen flag */
myscreen_setup.Font=NULL;

myscreen_setup.DefaultTitle="My Screen";

myscreen_setup.Gadgets=NULL;

myscreen_setup.CustomBitMap=NULL;

/* Attach the pen specification tags to the ExtNewScreen structure */
myscreen_setup.Extension=myscreen_tags;

44 Amiga ROM Kernel Reference Manual: Libraries

if (NULL != (my_screen =
OpenScreen((struct NewScreen *)&myscreen_setup)));

{

/* screen successfully opened */
Delay (200L); /* normally the program would be here */

CloseScreen (my_screen);

}
CloseLibrary(IntuitionBase);

}
}

As you can see from the examples above, there are many ways to create a new, custom screen. Further
references to ‘‘OpenScreenTagList()’’ in this manual are referring to any one of the three calls:
OpenScreenTagList(), OpenScreenTags(), or OpenScreen() used with tags in an ExtNewScreen as
shown above.

Return Values from OpenScreenTagList()

OpenScreenTagList() and its variants return a pointer to a Screen structure on the successful creation of a
new screen and NULL on failure. With V36, the call now supports extended error codes on failure. The
error returns provide information on the type of failure, giving the application a greater chance of recovery.
To get the extended error code, you need to use the SA_ErrorCode tag; the code itself will be placed into
the LONG pointed to by the Tagltem.ti_Data field. Here are the codes:

OSERR_NOMONITOR
The monitor needed to display the requested mode is not available. An example of this error would be
opening a Productivity mode screen on a system without a VGA or multisync monitor.

OSERR_NOCHIPS
Newer custom chips are required for this screen mode. For instance, the ECS Denise is required for
the productivity modes.

OSERR_NOMEM
Could not allocate enough memory.

OSERR_NOCHIPMEM
Could not allocate enough Chip memory.

OSERR_PUBNOTUNIQUE
Could not create public screen--name already used. The system requires that public screen names be
unique.

OSERR_UNKNOWNMODE
Display mode requested was not recognized. The system does not understand the value specified with
the SA_DisplayID tag.

Closing the Screen

When an application has finished using a screen, the memory that the screen occupied should be returned to
the system by calling CloseScreen(). Normally, an application should close only those screens that it
created. Under V34 and earlier versions of the OS, CloseScreen() returns no values. Under Release 2,
CloseScreen() returns a boolean value, TRUE for success and FALSE for failure. CloseScreen() can fail if
the screen is public and another task is still using the screen.

Intuition Screens 45

SCREEN ATTRIBUTES

The sections above discuss only the basic functions and screen types that Intuition programmers need to
understand to creatc a custom screen. Intuition supports an astonishing number of additional display
features and options. In this scction and the sections to follow, the finer points of screen attributes and the
functions that control them are presented.

Screen attributes are specified using the tag item scheme described in the “‘Utility Library’’ chapter.
Therefore, the screen attributes are listed here by tag values. (In V34, the NewScreen structure was used to
set screen attributes so many of the tag options listed here have a corresponding flag in NewScreen.) In
general, specifying a tag overrides the corresponding flag or field in the NewScreen structure if you supply
one.

SA_ErrorCode
Extended error code. Data is a pointer to a long which will contain the error code on return if
OpenScreenTagList() returns NULL. The error codes are described above.

SA_Left, SA_Top
Initial screen position (left edge and top edge). Data is a long, signed value. Offsets are relative to the
text overscan rectangle.

If SA_Left is not specifiecd and a NewScreen structure is not passed in the OpenScreenTags/
TagList() call and SA_Width is not specified or is specificd as STDSCREENWIDTH, then the left
edge of the screen will default to the left edge of the actual display clip of the screen. If the other
conditions are met but some explicit SA_Width is specified, then the left edge defaults to zero (text
overscan rectangle left edge). Likewise, the top edge may, independent of the left edge value, default
to zero or to the top edge of the actual display clip. If SA_Top is not specified and a NewScreen
structure is not passed in the OpenScreenTags/TagList() call and SA_Height is not specified or
specified as STDSCREENHEIGHT, then the top edge of the screen will default to the top edge of the
actual display clip of the screen. If the other conditions are met but some explicit SA_Height is
specified, then the top edge defaults to zero (text overscan rectangle top cdge). Prior to V36, left edge
positioning is ignored and negative top edge positions are illegal.

When opening a full sized overscan screen, SA_Left should be set to the MinX value of the display
clip Rectangle used for the screen and SA_Top should be set to the MinY value of the display clip.
This may be taken from the defaults, as explained above, or explicitly set by the application. See the
section below on *‘Overscan and the Display Clip’” and the OpenScreen() Autodoc for more details.

If your screen is larger than your display clip, you may wish to set the SA_Left and SA_Top to values
less than your display clip MinX and MinY in order to center a large screen on a smaller display. For
an example of how to open a centered overscan screen, see module/screen.c in the IFF Appendix of the
Amiga ROM Kernel Reference Manual: Devices.

SA_Width, SA_Height
Screen dimensions. Data is a long, unsigned value. These may be larger, smaller or the same as the
dimensions of the display clip Rectangle. The use of STDSCREENWIDTH and
STDSCREENHEIGHT will make the screen size equal to the display clip size.

To calculate the width of the display clip Rectangle, subtract the MinX value from the MaxX value

plus one. Similarly, the height of the display clip may be calculated by subtracting the MinY value
from the MaxY value plus one.

46 Amiga ROM Kernel Reference Manual: Libraries

SA_Depth
Screen bitmap depth. Data is a long, unsigned value. The depth of the screen determines the number
of available colors. See the ‘‘Graphics Primitives’’ for more information on hardware limitations of
the display. Do not set the depth to a value greater than that supported by the specific display mode.
This information is available to the application through the graphics library display database. The
default is one bitplane.

SA_DisplayID
Extended display mode key for the screen. Data is a long, unsigned value. By using Release 2
DisplayIDs and the display database, applications can open a screen in any display mode available on
a user’s system, including PAL and NTSC modes. See the discussion of the display database in the
“‘Graphics Primitives’’ chapter and the include file <graphics/displayinfo.h> for more information.

SA Pens
Pen specification for the screen. Data is a pointer to a UWORD array terminated with -0, as found in
the DrawlInfo structure. Specifying the SA_Pens tag informs the systcm that the application is
prepared to handle a screen rendered with the new 3D look of Intuition. See the section below on
“‘DrawInfo and the 3D Look’’. Omitting this tag produces a screen with a flat look, but whose color
usage is more backwards compatible.

SA_DetailPen
Detail pen for the screen. Data is a long, unsigned value. Used for rendering details in the screen title
bar and menus. Use SA_Pens beginning with V36 for more control of pen specification. If SA_Pens
is not specified, the screen will not get the new 3D look of Intuition available in Release 2. Instead
this value will be used as the detail pen.

SA_BlockPen
Block pen for the screen. Data is a long, unsigned value. Used for rendering block fills in the screen
title bar and menus. Use SA_Pens beginning with V36 for more control of pen specification. If
SA_Pens is not specified, the screen will not get the new 3D look and this value will be used as the
block pen.

SA Title
Default screen title. Data is a pointer to a character string. This is the title displayed when the active
window has no screen title or when no window is active on the screen.

SA_Colors
Specifies initial screen palette colors. Data is a pointer to an array of ColorSpec structures, terminated
by a ColorSpec structure with ColorIndex = -1. Screen colors may be changed after the screen is
opened with the graphics library functions SetRGB4() and LoadRGB4(). ColorSpec colors are
right-justified, four bits per gun.

SA_FullPalette
Initialize color table to entire preferences palette (32 colors beginning with V36), rather than the subset
from V34 and earlier, namely pens 0-3, 17-19, with remaining palette as returned by GetColorMap().
Data is a boolean value (use TRUE to set the flag). Defaults to FALSE.

SA_Font

Data is a pointer to a TextAttr structure (defined in <graphics/text.h>) which specifics the font, size
and style to use for the screen. Equivalent to NewScreen.Font.

Intuition Screens 47

SA_SysFont

Alternative to SA_Font. Selects one of the preferences system fonts. Data is a long, unsigned value,
with the following values defined:

0 Open screen with the user’s preferred fixed width font (the default).
1 Open screen with the user’s preferred font, which may be proportional.

The Workbench screen is opened with {SA_SysFont , 1}. Table 3-4 summarizes how the font
selected at OpenScreen() time effects subsequent text operations in screens and windows.

Table 3-4: Intuition Font Selection Chart

What you tell OpenScreen() Screen font Window.RPort font

A. NewScreen.Font=myfont myfont myfont

B. NewScreen.Font=NULL GfxBase->DefaultFont GfxBase->DefaultFont

C. {SA_Font, myfont} myfont myfont

D. {SA_SysFont, 0} GfxBase->DefaultFont ~ GfxBase->DefaultFont

E. {SA_SysFont, 1} Font Prefs Screen text ~ GfxBase->DefaultFont
Notes:

A and B are the options that existed in V34 and earlier OS versions.

C and D are tags in Release 2 equivalent to A and B respectively.

E is a new option for V36. The Workbench screen uses this option.

For ‘myfont’, any font may be used including a proportional one. This is true under all releases of the OS.
GfxBase->DefaultFont is always monospace. (This is the ‘‘System Default Text’* from Font Preferences.)

Font Prefs Screen text (the ‘‘Screen Text’’ choice from Font Preferences) can be monospace or
proportional.

The screen’s font may not legally be changed after a screen is opened. The menu bar, window titles,
menu items, and the contents of a string gadget all use the screen’s font. The font used for menu items
can be overridden in the menu item’s IntuiText structure. Under V36 and higher, the font used in a

string gadget can be overridden through the StringExtend structure. The font of the menu bar and
window titles cannot be overridden.

The Window.RPort font shown above is the initial font that Intuition sets in your window’s
RastPort. It is legal to change that subsequently with SetFont(). IntuiText rendered into a window
(either through PrintIText() or as a gadget’s GadgetText) defaults to the window’s RastPort font,

but can be overridden using its ITextFont ficld. Text rendered with the graphics library call Text()
uses the window’s RastPort font.

SA_Type
Equivalent to the SCREENTYPE bits of the NewScreen.Type field. Data is a long, unsigned value
which may be set to either CUSTOMSCREEN or PUBLICSCREEN (WBENCHSCREEN is reserved

for system use). See the tags SA_BitMap, SA_Behind, SA_Quiet, SA_ShowTitle and SA_AutoScroll
for the other attributes of the NewScreen.Type field.

SA_BitMap
Use a custom bitmap for this screen. Data is a pointer to a BitMap structure. This tag is equivalent to

NewScreen.CustomBitMap and implies the CUSTOMBITMAP flag of the NewScreen.Type ficld.
The application is responsible for allocating and freeing the screen’s bitmap.

48 Amiga ROM Kernel Reference Manual: Libraries

SA Behind
Open this screen behind all other screens in the system. Data is a boolean value (TRUE to set flag).
This tag is equivalent to the SCREENBEHIND flag of the NewScreen.Type ficld.

SA_Quiet
Disable Intuition rendering into screen. Data is a boolean value (TRUE to set flag). This tag is
equivalent to the SCREENQUIET flag of the NewScreen.Type field. The screen will have no visible
title bar or gadgets, but dragging and depth arrangement still function. In order to completely prevent
Intuition from rendering into the screen, menu operations must be disabled for each window in the
screen using WFLG_RMBTRAP.

SA_ShowTitle
Setting this flag places the screen’s title bar in front of any backdrop windows that are opened on the
screen. Data is a boolean value (TRUE to set flag). This tag is equivalent to the SHOWTITLE flag of
the NewScreen.Type field. The title bar of the screen is always displayed behind any non-backdrop
windows on that screen. This attribute can be changed after the screen is open with the ShowTitle()
function.

SA_AutoScroll
Setting this flag will enable autoscroll for this screen when it is the active screen. (Currently, the
screen may only be made active by activating a window in that screen either under user or application
control.) Data is a boolean value (TRUE to set flag). This tag is equivalent to the AUTOSCROLL
flag of the NewScreen.Type ficld.

Autoscroll means that screens larger than the visible display will automatically scroll when the user
moves the mouse to the edge of the screen. Without this tag, the user moves the screen either by using
the screen drag bar, or by pressing the mouse select button anywhere within the screen while holding
down the left Amiga key and moving the mouse.

SA_PubName
Presence of this tag means that the screen is to be a public screen. Data is a pointer to a string. The

string is the name of the public screen which is used by other applications to find the screen. This tag
is order dependent, specify before SA_PubSig and SA_PubTask.

SA_PubSig, SA_PubTask
Task ID (returned by FindTask()) and signal for notification that the last window has closed on a
public screen. Data for SA_PubSig is a long, unsigned value. Data for SA_PubTask is a pointer to a
Task structure. These two tags are order dependent, and must be specified after the tag SA_PubName.

SA Overscan
Set to one of the OSCAN_ specifiers to use a system standard overscan display clip and screen
dimensions (unless otherwise specified). Data is a long, unsigned value. Do not specify this tag and
SA_DClip. SA_Overscan is used to get one of the standard overscan dimensions, while SA_DClip is
for custom dimensions. If a display clip is not specified with either SA_Overscan or SA_DClip, the
display clip defaults to OSCAN_TEXT. See the section below on ‘‘Overscan and the Display Clip”’
for more information.

SA_DClip

Custom display clip specification. Data is a pointer to a Rectangle structure that defines the screen
display clip region.

Intuition Screens 49

Public Screen Functions

Public screens are a new feature of Release 2 (V36). A public screen allows multiple applications to share
a single screen thus saving memory. If your application opens a public screen, then other applications will
be able to open their windows on your screen. In older versions of the operating system, only the
Workbench screen could be shared so applications had to live within its limitations or use up Chip memory
creating their own private, custom screens.

Now the system allows any screen to be set up as a public screen so there may be many public screens in
memory at once, not just Workbench. This permits the power user to set up different work environments
that multiple applications can share in a way that is memory efficient (each one with a display mode
appropriate to a particular job).

Workbench is a special case public screen because it is the initial default public screen. The default public
screen is the screen applications will get when they ask for a public screen but don’t specify a name. Under
normal conditions, Workbench is the default public screen and is created by the system at startup time.
However, keep in mind that the default public screen can be changed (it’s not always guaranteed to be
Workbench).

Screens for the Novice. If you’re not sure what kind of screen to use, then use the default

public screen. Under Release 2, you can open a window on the default public screen without
doing any screen set-up work. See the ‘‘Intuition Windows’’ chapter for more details.

Generally, it is much easier to use an existing, public screen than to set up one of your own. Here are the
basic functions you use to work with an existing public screen.

Table 3-5: Public Screen Functions

LockPubScreen() Find Workbench or any other public screen; prevent it from closing while
a window is opened or its attributes copied.
UnlockPubScreen() Release the lock allowing the screen to later be closed.

SetDefaultPubScreen() Establishes a given public screen as the default.

GetDefaultPubScreen() Copies the name of the default screen to a user supplied buffer for use by
the screen manager utility (the name is not neecded by normal
applications, use LockPubScreen(NULL) instead).

PubScreenStatus() Converts a screen to private or public status.
SetPubScreenModes() Controls the public screen global mode bits.

By using an existing public screen, an application is no longer responsible for setting up the display,
however, it also loses flexibility and control. It can no longer set the palette or depth, and it cannot write
directly into screen memory without cooperation from the owner of the public screen. (If these limitations
are too confining, the application can create a new screen instead.)

50 Amiga ROM Kernel Reference Manual: Libraries

ACCESSING A PUBLIC SCREEN BY NAME

The main calls for accessing an existing public screen are LockPubScreen() and UnlockPubScreen(). To
use these functions you need to know the name of the public screen you want to access. If you do not know
the name of the public screen or if you are not sure, you can lock the default public screen with
LockPubScreen(NULL).

struct Screen *LockPubScreen(UBYTE *)
VOID UnlockPubScreen(UBYTE * , struct Screen *)

These calls enable the application to determine that a public screen exists, and to ensure its continued
existence while opening a window on it. This function also serves as an improvement over the old
GetScreenData() function from V34 by returning a pointer to the Screen structure of the locked screen so
that its attributes can be examined.

Be sure to unlock the public screen when done with it. Note that once a window is open on the screen the
program does not need to hold the screen lock, as the window acts as a lock on the screen. The pointer to
the screen structure is valid as long as a lock on the screen is held by the application, or the application has
a window open on the screen.

Locks should not be held without reason. Holding unnecessary locks on screens may prevent the user from
closing a public screen that has no apparent activity. Keep in mind that as long as you have a window open
on a public screen, the window acts as a lock preventing the screen from closing.

Shown here is a simple example of how to find the Workbench public screen using LockPubScreen() and
UnlockPubScreen().

;/* pubscreenbeep.c - Execute me to compile me with SAS 5.10
LC -bl -cfistqg -v -y =373 pubscreenbeep.c
blink LIB:c.o pubscreenbeep.o TO pubscreenbeep LIB LIB:lc.lib LIB:amiga.lib

quit

*/

#include <exec/types.h> /* Amiga data types. */
#include <exec/libraries.h>

#include <intuition/intuition.h> /* Lots of important Intuition */
#include <intuition/screens.h> /* structures we will be using. */
#include <clib/exec_protos.h> /* Function prototypes */

#include <clib/intuition_protos.h>

#ifdef LATTICE

int CXBRK (void) { return(0); } /* Disable Lattice CTRL/C handling */
int chkabort (void) { return(0); } /* really */

#endif

struct Library *IntuitionBase; /* Intuition library base *x/

/* Simple example of how to find a public screen to work with in Release 2.
*/

VOID main(int argc, char **argv)
{

struct Screen *my wbscreen ptr; /* Pointer to the Workbench screen */

/* Open the library before you call any functions */
IntuitionBase = OpenLibrary("intuition.library",0);
if (NULL != IntuitionBase)
{
if (IntuitionBase->1ib Version>=36)
{
/* OK, we have the right version of the OS so we can use
** the new public screen functions of Release 2 (V36)
*/

Intuition Screens 51

if (NULL!=(my_wbscreen_ptr=LockPubScreen ("Workbench")))
{

/* OK found the Workbench screen. */
/* Normally the program would be here. A window could */
/* be opened or the attributes of the screen copied */

DisplayBeep (my wbscreen ptr);

UnlockPubScreen (NULL, my wbscreen ptr);
}
}

else
{
/* Prior to Release 2 (V36), there were no public screens, */
/* just Workbench. 1In those older systems, windows can be *x/

/* opened on Workbench without locking or a pointer by setting */
/* the Type=WBENCHSCREEN in struct NewWindow. Attributes can */
/* be obtalned by setting the Type argument to WBENCHSCREEN in */
/* the call to GetScreenData{). */

}
CloselLibrary (IntuitionBase);

}

THE DEFAULT PUBLIC SCREEN AND WORKBENCH

As mentioned earlier, Workbench is a special case public screen because it is the initial default public
screen. There are other reasons Workbench has a special status. Normally, it’s the first thing the user sees
because it is the default user interface on all Amiga computers. Many older applications written for V34
and earlier versions of the OS expect to run in the Workbench screen. Also, Workbench is currently the
only public screen supported by system Preferences and the only screen Intuition can automatically open.

Because of its close ties with the operating system, there are some extra functions available to manipulate
the Workbench screen. One function which controls both Workbench and other public screens is
SetPubScreenModes(). This function controls the global public screen mode bits, SHANGHAI and
POPPUBSCREEN. If the SHANGHAI mode bit is set, older applications which expect to open on the
Workbench screen will open instead on the default public screen (which may or may not be the Workbench
screen). The POPPUBSCREEN bit controls whether public screens will be popped to the front when a
window is opened. These modes are documented in the ‘‘Intuition Windows’’ chapter in the section on
““Windows and Screens’’.

Other functions which control the Workbench screen are listed in the table below.

Table 3-6: Workbench Public Screen Functions

WBenchToBack() Move the Workbench screen behind all other screens.

WBenchToFront() Move the Workbench screen in front of all other screens.

OpenWorkBench() Open the Workbench screen. If the screen is already open, this call has
no effect. This call will re-awaken the Workbench application if it was
active when CloseWorkBench() was called.

CloseWorkBench() Attempt to reclaim memory used for the Workbench screen. If
successful, this call closes the screen and puts the Workbench application
to sleep. This call fails if any application has windows open or locks on
the Workbench screen.

52 Amiga ROM Kernel Reference Manual: Libraries

Programs can attempt to reclaim memory used by the Workbench screen by calling CloseWorkBench().
Programs that have closed Workbench, should call OpenWorkBench() as they exit or allow the user to re-
open the screen through a menu or gadget.

If Workbench is closed, any of the following events can re-open it: calling OpenWorkBench(); opening a
window on the Workbench (including EasyRequests() such as the DOS *‘Insert Disk’’ requester); calling
LockPubScreen("Workbench"); calling LockPubScreen(NULL) when Workbench is the default public
screen.

TAKING A NEW CUSTOM SCREEN PUBLIC

Applications that open a new screen should consider taking the screen public. If the screen’s characteristics
are not very esoteric, making the screen public is useful because it allows other applications to share the
working context. This makes an application more powerful and more attractive to the user because it
allows the user to add supporting applications and utilities from other vendors to make a customized and
integrated work environment.

To make your own custom screen into a public screen that other applications may use, you give the screen a
public name and then register the screen with Intuition. The screen must be declared as public in the
OpenScreenTagList() call by specifying a public name string with the SA_PubName tag. The
application’s task ID and a signal bit may also be registered when the screen is opened with the
SA_PubTask and SA_PubSig tags. If these tags are given, the system will signal your task when the last
window on the screen closes.

When a new public screen is opened, it starts out private so the application can perform any desired
initialization (for instance, opening a backdrop window) before the screen is made public. Use the
PubScreenStatus() function to make the screen public and available to other applications (or to take the
screen private again, later). The screen may not be taken private or closed until all windows on the screen
are closed and all locks on the screen are released. However, the screen does not need to be made private
before closing it.

CloseScreen() will fail if an attempt is made to close a public screen that still has visitor windows or locks
on it. If the user selects close screen, but the screen will not close due to visitor windows, a requester
should be displayed informing the user of the condition and instructing them to close any windows before
closing the screen.

SEARCHING THE PUBLIC SCREEN LIST

To access an existing public screen the application may take one of three approaches. To get a lock on the
default public screen, cither LockPublicScreen(NULL) or {WA_PubScreenName , NULL} may be used.

If the name of the screen is known, the application may use LockPubScreen(Name) to gain a lock on the
screen as shown in the example above (or use OpenWindowTagList() with thc WA PubScreenName tag
as described in the ‘‘Intuition Windows’’ chapter). Failure to lock the screen or open the window probably
indicates that the screen does not exist.

Intuition Screens 53

A third approach is to search the public screen list for a screen that meets the requirements of the
application. These requirements may be related to the name or attributes of the screen. Here are the
functions to use with the public screen list maintained by Intuition.

Table 3-7: Public Screen List Functions

LockPubScreenList() Lock the public screen list maintained by Intuition so that it may be
quickly copied

UnlockPubScreenList() Release the lock on the public screen list

NextPubScreen() Find the next screen in the public screen list

The main function used to access the public screen list is LockPubScreenList(). This function, intended
for use by the public screen manager utility, locks the list to allow data from it to be quickly copied. The
list is stored in an Exec List structure, with each node in the list being a PubScreenNode structure. See
<intuition/screens.h> for details.

Do not interpret the list while in a locked state, instead, copy any values required to local variables and
release the lock. All required data must be copied, including the name of the screen which is not part of the
structure. Pointers that reference the list or structures attached to the list are not valid after releasing the
lock. Once the lock is released, the screen pointers in the list (psn_Screen) may be tested for equality
against other screen pointers, but referencing any part of the screen structure from this pointer is strictly
illegal. After the lock is released with UnlockPubScreenList(), the application may access the data in the
screen structure by obtaining a lock on the screen using LockPubScreen() with the name of the screen.

The application should only require accessing three fields in the PubScreenNode, these are In_Name,
psn_Screen and psn_Flags. The name of the public screen is maintained in the In_Name field of the Node
(psn_Node) structure. Access to other information on the screen may be done by getting a lock on this
name and reading the data from the Screen structure. The screen pointer (psn_Screen) may only be used
for testing against other screen pointers, never reference the screen structure from this value. Finally, the
public screen flags are maintained in psn_Flags. Currently, only PSNF_PRIVATE is defined for this field.
PSNF_PRIVATE indicates that the screen is not currently public.

Remember that all information in the public screen list is transitory, that is, it may change at any time. Do
not rely on the values in the list. The only way to ensure the existence or mode of a screen is to lock it,
either directly with LockPubScreen() or by opening a window on the screen. To update the copy of the
list, lock it and copy the data again. Don’t forget to release the lock when finished.

As an alternative to dealing with the public screen list, NextPubScreen() can be used. This call takes the
name of a public screen as its argument and returns the name of the next screen in the public screen list.
This helps an application move a window through the entire rotation of public screens. Repeated calls to
NextPubScreen() could be used to get the names of all public screens one at a time. Keep in mind though
that the list of public screens is subject to sudden change; the task that owns a public screen might close it
after you obtain the name, but before you access the screen.

Always use LockPubScreen() to access screen information after scanning the public screen list.

54 Amiga ROM Kernel Reference Manual: Libraries

Drawinfo and the 3D Look

In Release 2, whenever a new screen is created, Intuition also creates an auxiliary data structure called a
DrawlInfo. The Drawlnfo structure provides information Intuition uses to support the new 3D look of
Release 2 and specifies graphical information for applications that use the screen. The information
includes such items as aspect ratio (resolution), font, number of colors and drawing pens.

struct DrawInfo

{

UWORD dri_Version; /* will be DRI_VERSION */
UWORD dri_NumPens; /* guaranteed to be >= numDrIPens */
UWORD *dri_Pens; /* pointer to pen array */
struct TextFont *dri Font; /* screen default font */
UWORD dri_Depth; /* (initial) depth of screen bitmap */
struct { /* from DisplayInfo database for initial display mode */

UWORD X;

UWORD Y;

} dri_ Resolution;

ULONG dri_Flags; /* defined below */
ULONG dri_Reserved(7]; /* avoid recompilation ;%) */
}i

Before an application uses fields in the DrawlInfo structure, it should check the version of the structure to
ensure that all fields are available. If the field dri_Version is greater than or equal to the constant
DRI_VERSION that the application was compiled with, it can be assured that all ficlds in DrawInfo that it
knows about are being supported by Intuition.

THE PEN SPECIFICATION IN DRAWINFO

The drawing pen specification in DrawlInfo.dri_Pens allows applications to use appropriate colors for
graphic operations such as drawing text, shading 3D objects and filling items selected by the user.

Intuition has two default sets of pens, one for multi-bitplane screens and one for single bitplane screens. In
addition, there is a special compatibility mode for screens that do not specify the SA_Pens tag.

New 3D Look
The is the full 3D look as found by default on the Workbench screen in Release 2. Objects are drawn
so that light appears to come from the upper left of the screen with shadows cast to the lower right
giving them a three-dimensional look.

Monochrome New Look
It is impossible to produce the full 3D look in a single bitplane (two color) screen. Intuition provides a
fallback pen specification that is used in monochrome screens with no loss of information.

Compatible New Look
Custom screens that do not provide the SA_Pens tag are assumed to have no knowledge of the pen
array. They are rendered in a special version of the monochrome new look, which uses the screen’s
DetailPen and BlockPen to get its colors. This is provided for compatibility with V34 and older
versions of the operating system.

It is very easy for an application to use the default pen specification. Simply specify an empty pen

specification (in C, {-0}), and Intuition will fill in all of the values with defaults appropriate for the
screen. This technique is demonstrated in the first two examples listed earlier in this chapter.

Intuition Screens 55

For certain applications, a custom pen specification is required. A custom pen specification is set up when
the screen is opened by using the SA_Pens tag and a pointer to a pen array. Currently, Intuition uses nine
pens to support the 3D look. The application can specify all of these, or only a few pens and Intuition will
fill in the rest. Intuition will only fill in pens that are past the end of those specified by the application, there
is no facility for using default values for *‘leading’’ pens (those at the beginning of the array) without using
the defaults for the rest of the pens.

Using the pen specification of an existing public screen is a bit more involved. First, the application must
get a pointer to the screen structure of the public screen using the LockPubScreen() call. A copy of the
screen’s DrawlInfo structure may then be obtained by calling GetScreenDrawInfo(). The Drawlnfo
structure contains a copy of the pen specification for the screen that can be used in the
OpenScreenTagList() call with the SA_Pens tag. The pen array is copied to the data structures of the new
screen (it is not kept as a pointer to the information passed), so the application may immediately call
FreeScreenDrawInfo() and UnlockPubScreen() after the new screen is open.

/* publicscreen.c

** open a screen with the pens from a public screen.

* %

** SAS/C 5.10a

** 1c -bl -cfist -v -y publicscreen

** pblink FROM LIB:c.o publicscreen.o TO publicscreen LIB LIB:lc.lib LIB:amiga.lib
*/

#define INTUI_V36_NAMES_ONLY

#include <exec/types.h>
#include <intuition/intuition.h>
#include <intuition/screens.h>

#include <clib/exec_protos.h>
#include <clib/dos_protos.h>
#include <clib/intuition_protos.h>

#ifdef LATTICE

int CXBRK (void) { return(0); } /* Disable Lattice CTRL/C handling */
int chkabort (void) { return(0); } /* really */
#endif

VOID usePubScreenPens (void);
struct Library *IntuitionBase;

/* main(): open libraries, clean up when done.
*/
VOID main(int argc, char **argv)
{
IntuitionBase = OpenLibrary ("intuition.library",0);
if (IntuitionBase != NULL)
{
/* Check the version number; Release 2 is */
/* required for public screen functions */
if (IntuitionBase->1lib Version >= 37)
{
usePubScreenPens () ;
}
Closelibrary(IntuitionBase);
}
}

/* Open a screen that uses the pens of an existing public screen
** (the Workbench screen in this case).

*/

VOID usePubScreenPens (void)

{

struct Screen *my_screen;

struct Tagltem screen_tags[2];

UBYTE *pubScreenName = "Workbench";

struct Screen *pub_screen = NULL;
struct DrawInfo *streen_drawinfo = NULL;

56 Amiga ROM Kernel Reference Manual: Libraries

/* Get a lock on the Workbench screen */
pub screen = LockPubScreen (pubScreenName);
if (pub_screen != NULL)
{
/* get the DrawlInfo structure from the locked screen */
screen_drawinfo = GetScreenDrawInfo (pub_screen);
if (screen drawinfo != NULL)
{
/* the pens are copied in the OpenScreenTaglist () call,
** so we can simply use a pointer to the pens in the tag list.
* Kk
** This works better if the depth and colors of the new screen
** matches that of the public screen. Here we are forcing the
** workbench screen pens on a monochrome screen (which may not

** pe a good idea). You could add the tag:

*x (SA_Depth, screen_drawinfo->dri_ Depth)

*/

screen_tags{0].ti Tag = SA_Pens;

screen_tags[0].ti Data = (ULONG) (screen_drawinfo->dri Pens);
screen_tags[0].ti_Tag = TAG_END;

screen_tags{0}].ti Data = NULL;

my_screen = OpenScreenTagList (NULL, screen_tags);

if (my_screen != NULL)
{
/* We no longer need to hold the lock on the public screen
** or a copy of its DrawInfo structure as we now have our
** own screen. Release the screen.
*/
FreeScreenDrawInfo(pub_screen,screenwdrawinfo);
screen_drawinfo = NULL;
UnlockPubScreen (pubScreenName, pub_screen) ;
pub_screen = NULL;

Delay (90); /* should be rest of program */

CloseScreen (my_screen);

}
}

/* These are freed in the main loop if OpenScreenTaglist (} does

** not fail. 1If something goes wrong, free them here.
*/
if (screen drawinfo != NULL

FreeScreenDrawInfo(pubiscreen,screenidrawinfo);
if (pub_screen!= NULL
UnlockPubScreen (pubScreenName, pub_screen) ;

Beginning with V36, the pen specification for the Workbench screen happens to match the Intuition default
specification, however, this is not required and may change in the future. To create a screen that uses the
pens defined in the Workbench screen, the application must get a copy of the pen array from the
Workbench screen and use this copy with the SA_Pens tag as described above.

Here is a list of the pens defined under V36 that support the 3D look along with their uses. To read the
valuc of a particular pen, use UWORD penvalue = myDrawlnfo->dri_ Pens|[PENNAME], where
myDrawlInfo is a pointer to a Drawlnfo structure and PENNAME is taken from the list below:

DETAILPEN
Pen compatible with V34, Uscd to render text in the screen’s title bar,

BLOCKPEN
Pen compatible with V34. Used to fill the screen’s title bar.

TEXTPEN
Pen for regular text on BACKGROUNDPEN.

Intuition Screens 57

SHINEPEN
Pen for the bright edge on 3D objects.

SHADOWPEN
Pen for the dark edge on 3D objects.

FILLPEN
Pen for filling the active window borders and selected gadgets.

FILLTEXTPEN
Pen for text rendered over FILLPEN.

BACKGROUNDPEN
Pen for the background color. Currently must be zero.

HIGHLIGHTTEXTPEN
Pen for ““special color’” or highlighted text on BACKGROUNDPEN.

THE FONT SPECIFICATION IN DRAWINFO
Font information for a screen comes from a number of different places.

SA _Font
The application may specify the font to be used in a screen by providing the SA_Font tag with a
TextAttr structure. In this case, the font will be used by the screen and will be the default font for the
RastPort of any window opening in the screen.

SA_SysFont, 0
If the application requests the user’s preferred monospace font, it is taken from GfxBase-
>DefaultFont. Any window’s RastPorts are also initialized to use this same font.

SA_SysFont, 1
The screen font selected by the user from the Preferences font editor may be used for the screen by
using the SA_SysFont tag. This font, the ‘‘preferred screen font”’, may be proportional. For
compatibility reasons, if this font is specified for the screen, the window’s RastPort will be initialized
to GfxBase->DefaultFont (a non-proportional font).

To access information on an open screen’s font, the application may reference Screen.Font or
DrawlInfo.dri_Font. Thesc fonts are identical, the Drawlnfo structure simply provides an alternate
method of accessing the information. Note that Screen.Font is a pointer to a TextAttr structure and that
Drawlnfo.dri_Font is a pointer to a TextFont structure. The application may use whichever form is best
suited to its requirements.

It is illegal to change the screen’s font after the screen is opened. This means that the font specified in the
Screen and Drawlnfo structures is guaranteed to remain open as long is the screen is open.

The menu bar, window titles, menu items, and the contents of a string gadget all use the screen’s font. The
font used for menu items can be overridden in the menu item’s IntuiText structure. Under V36 and higher,
the font used in a string gadget can be overridden through the StringExtend structure. The font of the
menu bar and window titles cannot be overridden.

For more information on screen fonts, see the description of the SA_Font and SA_SysFont tags in the
“‘Screen Attributes’” section above.

58 Amiga ROM Kernel Reference Manual: Libraries

CLONING A PUBLIC SCREEN (WORKBENCH)

User preferences for screen attributes are generally reflected in the Workbench screen or in the default
public screen. In some cases it may be useful to create a new screen with the same attributes.

Under V34, information on a screen was available through the GetScreenData() call. Due to extensions in
V36 screen and graphics capabilities, this call is no longer sufficient to completely describe the display.
Applications should now use a variety of calls; the specific call depends on the information required.

LockPubScreen() returns a pointer to the Screen structure of a specific screen. GetScreenDrawlInfo()
returns rendering information on the screen, such as the pen array and font used. QueryOverscan() returns
the overscan information of a specific display mode (for more information, see the section on ‘‘Overscan
and the Display Clip”’).

The example below shows how to use GetScreenDrawlInfo() to examine the attributes of the Workbench
screen so that a new screen with the same attributes can be created.

struct DrawInfo *GetScreenDrawInfo(struct Screen *)

The attributes required to clone an existing screen are its width, height, depth, pens and mode. The pens
and screen depth are available through the Drawlnfo structure. The width and height may be obtained
from the Screen structure. (The width and height may be larger than the overscan area if the screen is
scrollable, and autoscroll may always be enabled as it does not effect displays smaller than or equal to the
overscan area.)

The screen’s display mode can be obtained using the graphics library call GetVPModeID(). This call
returns the display ID of an existing screen which can then be used as the data for the SA_DisplayID tag in
OpenScreenTagList(). Note that the example assumes the screen should be open to the user’s text
overscan preference. If an exact copy of the display clip of the existing screen is required, use the
VideoControl() command of the graphics library to access the ViewPortExtra structure.

The colors of the screen may be copied using the graphics library calls GetRGB4(), SetRGB4(),
SetRGB4CM() and LoadRGB4(). The example code does not copy the colors.

The example copies the font from the cloned screen. A reasonable alternative would be to use the user’s
preference font, which may be accessed through the SA_SysFont tag.

/* clonescreen.c

** clone an existing public screen.

* *

** SAS/C 5.10a

** lc -bl -cfist -v -y clonescreen

** blink FROM LIB:c.o clonescreen.o TO clonescreen LIB LIB:lc.lib LIB:amiga.lib
*/

#define INTUI_V36_NAMES_ONLY

#include <exec/types.h>

#include <exec/memory.h>
#include <intuition/intuition.h>
#include <intuition/screens.h>

#include <clib/exec_protos.h>
#include <clib/dos_protos.h>
#include <clib/graphics_protos.h>
#include <clib/intuition protos.h>

#include <string.h>

Intuition Screens 59

#ifdef LATTICE

int CXBRK (void) { return(0); } /* Disable Lattice CTRL/C handling */

int chkabort (void) { return(0); } /* really */
#endif

VOID cloneScreen(UBYTE *);

struct Library *IntuitionBase;
struct GfxBase *GfxBase;

/*

** Open all libraries for the cloneScreen() subroutine.
*/

VOID main(int argc, char **argv)

{

UBYTE *pub_screen_name = "Workbench";

IntuitionBase = OpenlLibrary("intuition.library",0);
if (IntuitionBase != NULL)
{
/* Require version 37 of Intuition. */
if (IntuitionBase->1ib Version >= 37)
{
/* Note the two methods of getting the library version
** that you really want.
*/

GfxBase = (struct GfxBase *)OpenLibrary("graphics.library",37);

if (GfxBase != NULL)
{

cloneScreen (pub_screen_name) ;

CloseLlibrary((struct Library *)GfxBase);
}
}
Closelibrary(IntuitionBase);
}
}

/* Clone a public screen whose name is passed to the routine.

* % wWidth, Height, Depth, Pens, Font and DisplayID attributes are

** all copied from the screen.

** Overscan is assumed to be OSCAN_TEXT, as there is no easy way to

** find the overscan type of an existing screen.

% AutoScroll is turned on, as it does not hurt. Screens that are

** smaller than the display clip will not scroll.
*/

VOID cloneScreen(UBYTE *pub_screen_name)
{

struct Screen *my_screen;

ULONG screen_modelID;

UBYTE *pub_scr_font_name;

UBYTE *font_name;

ULONG font_name_size;

struct TextAttr pub_screen_font;

struct TextFont *opened_font;

struct Screen *pub_screen = NULL;
struct DrawInfo *screen_drawinfo = NULL;

/* name is a (UBYTE *) pointer to the name of the public screen to clone */

pub_screen = LockPubScreen(pub_screen_name);
if (pub_screen != NULL)
{
/* Get the DrawInfo structure from the locked screen
** This returns pen, depth and font info.
*/
screen_drawinfo = GetScreenDrawInfo (pub_screen);
if (screen_drawinfo != NULL)
{
screen_modeID = GetVPModelD (& (pub_screen->ViewPort));
1f(screen_modeID != INVALID ID)
{
/* Get a copy of the font

** The name of the font must be copied as the public screen may

** go away at any time after we unlock it.

60 Amiga ROM Kernel Reference Manual: Libraries

** Allocate enough memory to copy the font name, create a
** TextAttr that matches the font, and open the font.
*/
pub_scr_font_name = screen_drawinfo->dri_Font->tf Message.mn_Node.ln_Name;
font_name_size = 1 + strlen(pub_scr_font_name);
font_name = AllocMem(font_name_size, MEMF_CLEAR);
if (font_name != NULL)
{
strcpy (font_name, pub_scr_font name);
pub_screen_font.ta Name = font_name;
pub_screen_font.ta_YSize = screen_drawinfo->dri_Font->tf YSize;
pub_screen_font.ta_Style = screen_drawinfo->dri Font->tf Style;
pub:screenifont.ta_Flags = screen_drawinfo->dri_Font->tf Flags;

opened_font = OpenFont (&pub_screen_font);
if (opened_font != NULL)
{
/* screen_modelD may now be used in a call to
** OpenScreenTagList () with the tag SA_DisplayID.

*/

my_screen = OpenScreenTags (NULL,
SA Width, pub_screen->Width,
SA_Height, pub_screen->Height,
SA_Depth, screen_drawinfo->dri_Depth,
SA Overscan, OSCAN_TEXT,
SA_AutoScroll, TRUE,
SA Pens, (ULONG) (screen_drawinfo->dri Pens),
SA_Font, (ULONG) &pub_screen_font,
SA_DisplayID, screen_modelD,
SA Title, "Cloned Screen",
TAG_END) ;

if (my_screen != NULL)

{

/* Free the drawinfo and public screen as we don’t
** need them any more. We now have our own screen.
*/

FreeScreenDrawInfo (pub_screen,screen_drawinfo);
screen_drawinfo = NULL;

UnlockPubScreen (pub screen name,pub screen);
pub_screen = NULL; - - -

Delay (300); /* should be rest_of program */

CloseScreen (my_screen);

}
CloseFont (opened_font);

}

FreeMem (font_name, font name_size);

}

}

/* These are freed in the main loop if OpenScreenTaglList () does

** not fail. If something goes wrong, free them here.
*/
if (screen drawinfo != NULL)
FreeScreenDrawlInfo (pub_screen,screen_drawinfo);
if (pub_screen != NULL)

UnlockPubScreen (pub_screen_name,pub_screen) ;

}

Overscan and the Display Clip

Screens may be larger or smaller than the defined display area (overscan rectangle or display clip). When a
screen is smaller than the display area, the display clip acts as a ‘‘container’’ for the screen. The screen
may be moved anywhere within the display clip. When a screen is larger than the display area, the display
clip acts as a ““‘window’’ into the screen. The screen may be moved so that different parts are visible. Each
dimension of the screen is independent and may be larger than, the same as, or smaller than the dimensions
of the display clip.

Intuition Screens 61

The system is very flexible in its specification of screen size. Unless an application fixes its screen size
with hard coded values, it should be prepared to handle the possibility that the user has changed the default
overscan presets or the default monitor (NTSC/PAL).

Use the constants STDSCREENHEIGHT and STDSCREENWIDTH with the SA_Width and SA_Height
tags to open a screen the same size as the display clip. These constants will work with any of the preset
overscan values set with SA_Overscan, and with custom overscan values set with SA_DClip.

PRESET OVERSCAN VALUES

Four preset overscan dimensions are provided. Applications that support overscan should use these preset
values where possible since they will be tailored to each individual system. Avoid using custom values that
happen to look good on a specific system. However, be aware that the size and positioning of overscan
screens can be different on every system depending on how the user has set Overscan Preferences. These
preset values are also dependent on the underlying display mode so keep in mind that both offset and size
parameters will change under different screen modes. Overscan presets can be used, among other things,
with the SA_Overscan tag to set the size of the screen’s display clip or passed as an argument to
QueryOverscan() to find their current overscan settings.

OSCAN_TEXT
This overscan region is based on user preference settings and indicates a display that is completely
within the visible bounds of the monitor. The View origin is set to the upper left corner of the text
overscan rectangle which is the highest leftmost point known to be visible on the physical display.
This position is set by the user through the Overscan Preferences editor. All screen positions and
display clips are relative to this origin.

OSCAN_STANDARD
The edges of OSCAN_STANDARD display are also based on user preferences and are set to be just
outside the visible bounds of the monitor. OSCAN_STANDARD provides the smallest possible
display that will fill the entire screen with no border around it. Parts of the display created with
OSCAN_STANDARD may not be visible to the user.

OSCAN_MAX
Create the largest display fully supported by Intuition and the graphics library. This is the largest size
for which all enclosed sizes and positions are legal. Parts of the display created with OSCAN_MAX
may not be visible to the user.

OSCAN_VIDEO
Create the largest display, restricted by the hardware. This is the only legal size and position that is
possibly (but not necessarily) larger than OSCAN_MAX. You must use the exact size and position
specified. OSCAN_VIDEO does not support variable left edge, top edge positioning. Parts of the
display created with OSCAN_VIDEO may not be visible to the user.

If custom clipping is required, a display clip may be explicitly specified using the SA_DClip tag and a
Rectangle structure specification. This custom rectangle must fit within the OSCAN_MAX rectangle,
offset included. It is not permitted to specify custom rectangles whose values are in between
OSCAN_MAX and OSCAN_VIDEO, nor is it permitted to specify rectangles larger than
OSCAN_VIDEO. For an example of how to open a centered overscan screen based on user preferences,
see the module/screen.c listing in the IFF Appendix of the Amiga ROM Kernel Reference Manual: Devices.

62 Amiga ROM Kernel Reference Manual: Libraries

Use the Graphics library call VideoControl() to find the true display clip of a screen. Sece the Graphics
Autodocs and the chapter ‘‘Graphics Primitives’’ for more information on VideoControl(). The
ViewPortExtra structure contains the display clip information.

If any dimension of a screen is not equal to the equivalent display clip dimension, then the screen may be
scrolled. If the screen’s dimensions are smaller than the display clip, then the screen may be positioned
within the display clip. If the screen is larger than the display clip, then it may be positioned such that any
part of the screen is visible.

AutoScroll may be activated by setting the tag SA_AutoScroll. Screcens will only scroll when they are the
active screen. Activate a window in the screen to make the screen active.

About the Default Display Clip. The default display clip for a screen is the entire screen, that
is, the rectangle starting from the upper left comer of the screen and ending at the lower right
corner of the screen. This display clip is only used if the application does not specify
SA_Overscan or SA_DClip. When using this default display clip the screen will not scroll as
the screen exactly fits into the clipping region.

When opening a window in an overscanned screen, it is often useful to open it relative to the visible part of
the screen rather than relative to the entire screen. Use QueryOverscan() to find the overscan region and
where the screen is positioned relative to it.

LONG QueryOverscan (ULONG displayID, struct Rectangle *rect, WORD overscanType)

This example was taken from the chapter ‘‘Intuition Windows’’ in the section ‘‘Visible Display Sized
Window Example’’. The complete example is reproduced there.

/* this technique returns the text overscan rectangle of the screen that we
** are opening on. If you really need the actual value set into the display
** clip of the screen, use the VideoControl () command of the graphics library
** to return a copy of the ViewPortExtra structure. See the Graphics

** library chapter and Autodocs for more details.

* Kk

** GetVPModeID() is a graphics call...

*/

screen_modeID = GetVPModeID (& (pub_screen->ViewPort))))
if (screen_modeID != INVALID_ID)
{
if (QueryOverscan(screen modeID, &rect, OSCAN_TEXT))
{
/* if this screen’s origin is up or to the left of the */
/* view origin then move the window down and to the right */
left = max(0, -pub_screen->LeftEdge);
top = max(0, -pub_screen->TopEdge);

/* get width and height from size of display clip */
width rect .MaxX - rect.MinX + 1;
height rect .MaxY - rect.MinY + 1;

[}

/* adjust height for pulled-down screen {only show visible part) */
if (pub_screen->TopEdge > 0)
height -= pub_screen->TopEdge;

/* ensure that window fits on screen */
height = min(height, pub_screen->Height);
width = min(width, pub_screen->Width);

/* make sure window is at least minimum size */
width = max(width, MIN_WINDOW WIDTH);

height = max(height, MIN_WINDOW_HEIGHT);

}

Intuition Screens 63

Intuition Screens and the Graphics Library

As previously mentioned, an Intuition screen is related to a number of underlying graphics library
structures.

Table 3-8: Graphics Data Structures Used with Screens

Structure Name Description Defined in Include File
View Root structure of the graphics display system <graphics/view.h>
ViewPort The graphics structure that corresponds to a screen <graphics/view.h>
BitMap Contains size and pointers to the screen’s bit planes <graphics/gfx.h>
ColorMap Contains size and pointer to the screen’s color table <graphicsiview.h>
RastPort Holds drawing, pen and font settings and the BitMap <graphics/rastport.h>

address

These data structures are unified in Intuition’s Screen structure (which also incorporates higher level
Intuition constructs such as menus and windows). Here’s a brief explanation of the graphics library
structures used with Intuition.

View
The View is the graphics structure that corresponds to the whole display, including all visible screens.
The system has just one View; it’s what you see on the monitor. The address of the View may be
obtained from any screen by using ViewAddress().

ViewPort
The ViewPort is the underlying graphics structure corresponding to a screen. Every screen has one
ViewPort. To get the address of the ViewPort from the Screen structure, use (&my_screen->
ViewPort). From the ViewPort an application may obtain pointers to all the screen’s bitplanes and to
its color table.

BitMap
The BitMap structure contains pointers to all the bit planes (up to 8) and their sizes. For future
compatibility, use (my_screen->RastPort.BitMap) to get the address of the BitMap from the screen
rather than (&my_screen->BitMap).

The BitMap.BytesPerRow field specifies the number of bytes that have been allocated for each raster
line. This may be larger than the screen width depending on display alignment restrictions.
Alignment restrictions may change. Always use this variable, not a hard-coded value.

ColorMap

The ColorMap contains a pointer to the color table, an array of 32 WORD:s for the hardware color
registers. Use SetRGB4(), GetRGB4(), SetRGB4CM() and LoadRGB4() from the graphics library
to access the color table. Do not read or write it directly.

RastPort
A RastPort controls the graphics rendering to any display area (not just screens). Screens have a
RastPort to allow direct rendering into the screen. Applications may find the RastPort address of a

screen with (&my_screen->RastPort). This generally is not useful since applications normally
render into windows.

64 Amiga ROM Kernel Reference Manual: Libraries

CHANGING SCREEN COLORS

Screen colors are set at the time the screen is opened with the SA_Colors tag. If the colors need to be
changed after the screen is opened, the graphics library function, LoadRGB4() should be used. To change
a single entry in the color table, use SetRGB4() and SetRGB4CM(). See the ‘‘Graphics Primitives’’
chapter for more information on these functions.

DIRECT SCREEN ACCESS

Sometimes an application may want direct access to the custom screen’s bitmap to use with low-level
graphics library calls. This may be useful if the application needs to do custom manipulation of the display
but also needs Intuition functionality. For instance, an application may want to use the graphics library
primitives to perform double buffering then, when detecting user input, switch to Intuition control of the
screen so that windows, gadgets and menus may be used to process the user input. If an application
chooses to combine these techniques, it must take special care to avoid conflicts with Intuition rendered
graphics. An example of how to do this is listed in the next section, ‘‘Advanced Screen Programming’’.

Application programs that open custom screens may use the screen’s display memory in any way they
choose. However, this memory is also used by Intuition for windows and other high level display
components on the screen. Writing directly to the screen memory, whether through direct access or through
graphics library calls that access the screen’s RastPort, is not compatible with many Intuition constructs
such as windows and menus.

Techniques such as this require great care and understanding of the Amiga. If possible, the application
should avoid these techniques and only use standard Intuition display and input processing. Directly
accessing the screen’s bitmap, while possible, is not recommended. A better way to access the screen
display is through windows. Windows provide access to the screen through layers which perform clipping
and arbitration between multiple drawing areas.

Alternatives to writing directly to a screen, such as using a backdrop window, greatly limit the number of
cases where an application must access screen memory. The ShowTitle() function allows the screen’s title
bar layer to be positioned in front of or behind any backdrop windows that are opened on the screen.
Hence, a backdrop window may be created that uses the entire visible area of the monitor. Application
programs that use existing public screens do not have the same freedom to access the screen’s display
memory as they do with custom screens. In general, public screens must be shared through the use of
windows and menus rather than directly accessing the screen’s display memory.

Use Direct Access Only On Screens You Own. An application may not steal the bitmap
of a screen that it does not own. Stealing the Workbench screen’s bitmap, or that of any other
public screen, is strictly illegal. Accessing the underlying graphics structures of a screen may
only be done on custom screens opened by the application itself.

Do Not Perform Layers Operations Directly. While layers are not part of the graphics
library, it is appropriate to mention them here. Certain types of layers operations are not
allowed with Intuition. You may not, for example, call SizeLayer() on a window (use
SizeWindow() instead). To access layers library features with screens, use Intuition windows!

A custom screen may be created to allow for modification of the screen’s Copper list. The Copper is the
display synchronized co-processor that handles the actual video display by directly affecting the hardware
registers. See the Amiga Hardware Reference Manual or the graphics library chapters for more information
on programming the Copper.

Intuition Screens 65

SCREEN FUNCTIONS THAT INTEGRATE INTUITION AND GRAPHICS

These functions, normally used only by the system, integrate high-level Intuition structures with the lower-
level constructs used by the graphics library to create the display.

Table 3-9: Screen Functions That Integrate Intuition and Graphics

MakeScreen() Update a single screen’s copper list
RethinkDisplay() Merge copper lists from all screens to form a View
RemakeDisplay() Update all screen copper lists then merge them to form a View

Advanced Intuition programmers may use these functions to achieve special screen effects such as double-
buffering or dual-playfield Intuition screens. For examples of these see the next section.

MakeScreen() updates, but does not install, a screen’s Copper list. This function is the Intuition equivalent
of the low-level MakeVPort() graphics library function. MakeScreen() performs the MakeVPort() call,
synchronized with Intuition’s own use of the screen’s ViewPort. Call RethinkDisplay() after
MakeScreen() to allow the new Copper list for the screen to take effect. The MakeScreen() function takes
one argument, a pointer to the Screen that contains the Copper list to be updated.

RethinkDisplay() combines all the screen’s copper lists into a single view. This procedure performs the
Intuition global display reconstruction, which includes massaging some of Intuition’s internal state data,
rethinking all of the Intuition screen ViewPorts and their rclationship to one another, and, finally,
reconstructing the entire display by merging the new screens into the graphics View structure. Custom
screens that handle their own Copper instructions, use this call to install the Copper list previously updated
with MakeScreen(). RethinkDisplay() calls lower-level graphics primitives MrgCop() and LoadView()
to install the Copper list. This function takes no arguments.

RemakeDisplay() remakes the entire Intuition display. It is equivalent to calling MakeScreen() for each
screen in the system, then calling RethinkDisplay(). This routine performs a MakeVPort() (graphics
primitive) on every Intuition screen and then calls RethinkDisplay() to recreate the View. It takes no
arguments.

Both RemakeDisplay() and RethinkDisplay() take several milliseconds to run and lock out all other tasks
while they run. This can seriously degrade system performance, so do not use these routines lightly.

LIMITATIONS OF THE GRAPHICS SUBSYSTEM

If each of the visible screens does not have the same physical attributes, it may not be possible to display
the data in its proper screen mode. Screen coercion is the technique that allows multiple screens with
differing physical attributes to be displayed simultancously. When a coerced screen is visible, its aspect
ratio and colors may appear significantly changed. This is normal and the screen will be displayed correctly
when it is the frontmost screen.

Hardware restrictions prcvent certain types of displays. For instance, screens always use the full width of
the display, regardless of the width of the overscan rectangle. This prevents any changes in display mode
within a video line. Other modes, such as the VGA modes, require specific revisions of the custom chips
and may not be available on all machines. See the ‘‘Graphics Primitives’’ chapter and the Amiga
Hardware Reference Manual for more information on Amiga display organization and limitations.

66 Amiga ROM Kernel Reference Manual: Libraries

Advanced Screen Programming

This section discusses how to perform double-buffering of Intuition screens, how to create a dual-playfield
Intuition screen and other advanced topics.

DOUBLE BUFFERING

Double buffering of an Intuition screen involves the swapping of bitmaps of the screen, then updating the
copper list to install the changes. The trick is that after installing the bitmaps to the screen the display is not
updated to access these new bitmaps until the program explicitly updates the copper list. Any rendering
performed before the copper list is updated will be rendered into the off-display bitmaps, appearing on the
screen in completed form when the copper list is updated.

First, install the alternate bitmaps into the screen.

/* switch the bitmap so that we are drawing into the correct place */
screen->RastPort.BitMap = myBitMaps([toggleFrame];
screen->ViewPort.RasInfo->BitMap = myBitMaps[toggleFrame];

Rendering may then take place into the off screen bitmaps by drawing into screen->RastPort.

The copper list of the screen is updated by calling MakeScreen(). This call refreshes the copper list, but
does not install it into the system. Call RethinkDisplay() to install the new copper list so that the data is
visible.

/* update the physical display to match the newly drawn bitmap. */

MakeScreen(screen); /* Tell intuition to do its stuff. */
RethinkDisplay () /* Intuition compatible MrgCop & LoadView */
/* it also does a WaitTOF(). */

Note that it is possible for the user to force the updating of the screen’s copper list by dragging or depth-
arranging the screen. This may cause information to be displayed before it is complete.

A complete example of double buffering a screen follows.

/* doublebuffer.c

** show the use of a double-buffered screen.

* *

** SAS/C 5.10a

**]lc -bl -cfist -v -y doublebuffer

** plink FROM LIB:c.o doublebuffer.o TO doublebuffer LIB LIB:lc.lib LIB:amiga.lib
*/

#define INTUI V36 NAMES_ONLY

#include <exec/types.h>

#include <exec/memory.h>
#include <intuition/intuition.h>
#include <intuition/screens.h>

#include <clib/exec_protos.h>

#include <clib/graphics_protos.h>
#include <clib/intuition_protos.h>

#ifdef LATTICE

int CXBRK (void) { return(0); } /* Disable Lattice CTRL/C handling */
int chkabort (void) { return(0); } /* really */
#endif

Intuition Screens 67

/* characteristics of the screen */
#define SCR_WIDTH (320)
#define SCR_HEIGHT (200)
#define SCR_DEPTH (2)

/* Prototypes for our functions */

VOID runDBuff (struct Screen *, struct BitMap **);
struct BitMap **setupBitMaps{ LONG, LONG, LONG);

VOID freeBitMaps (struct BitMap **,LONG, LONG, LONG);
LONG setupPlanes (struct BitMap *, LONG, LONG, LONG);
VOID freePlanes (struct BitMap *, LONG, LONG, LONG);

struct Library *IntuitionBase = NULL;
struct Library *GfxBase NULL;

[

/*

** Main routine. Setup for using the double buffered screen.
** Clean up all resources when done or on any error.

*/

VOID main(int argc, char **argv)
{

struct BitMap **myBitMaps;
struct Screen *screen;

struct NewScreen myNewScreen;

IntuitionBase = OpenLibrary(*intuition.library®, 33L);
1f (IntuitionBase != NULL
{
GfxBase = Openlibrary("graphics.library", 33L);
if (GfxBase != NULL
{
myBitMaps = setupBitMaps(SCR_DEPTH, SCR_WIDTH, SCR_HEIGHT);
if (myBitMaps != NULL)
{
/* Open a simple quiet screen that is using the first
** of the two bitmaps.
*/
myNewScreen.LeftEdge=0;
myNewScreen.TopEdge=0;
myNewScreen.Width=SCR_WIDTH;
myNewScreen.Height=SCR_HEIGHT;
myNewScreen.Depth=SCR_DEPTH;
myNewScreen.DetailPen=0;
myNewScreen.BlockPen=1;
myNewScreen.ViewModes=HIRES;
myNewScreen.Type=CUSTOMSCREEN | CUSTOMBITMAP | SCREENQUIET;
myNewScreen.Font=NULL;
myNewScreen.DefaultTitle=NULL;
myNewScreen.Gadgets=NULL;
myNewScreen.CustomBitMap=myBitMaps([0];

screen = OpenScreen (&myNewScreen);
if (screen != NULL)

{
/* Indicate that the rastport is double buffered. */
screen->RastPort.Flags = DBUFFER;

runDBuff (screen, myBitMaps);

CloseScreen(screen);
}
freeBitMaps (myBitMaps, SCR_DEPTH, SCR_WIDTH, SCR_HEIGHT);

}
Closelibrary (GfxBase);

}

CloseLlibrary(IntuitionBase);

}

68 Amiga ROM Kernel Reference Manual: Libraries

/*

** setupBitMaps(): allocate the bit maps for a double buffered screen.
*/

struct BitMap **setupBitMaps (LONG depth, LONG width, LONG height)

{

/* this must be static -- it cannot go away when the routine exits. */
static struct BitMap *myBitMaps(2];

myBitMaps[0] = (struct BitMap *) AllocMem((LONG)sizeof(struct BitMap), MEMF_CLEAR);

if (myBitMaps([0] != NULL)
{
myBitMaps (1) = (struct BitMap *)AllocMem((LONG)sizeof (struct BitMap), MEMF_CLEAR);
if (myBitMaps (1) != NULL)

{
InitBitMap (myBitMaps([0), depth, width, height);
InitBitMap (myBitMaps (1], depth, width, height);

if (NULL != setupPlanes (myBitMaps(0]), depth, width, height))
{
if (NULL != setupPlanes(myBitMaps(1l], depth, width, height))
return (myBitMaps);

freePlanes (myBitMaps([0], depth, width, height);
Free&em(myBitMaps[l], (LONG)sizeof (struct BitMap));
Freeéem(myBitMaps[O], (LONG) sizeof (struct BitMap));
retuin(NULL);
}

/*

** runDBuff () : loop through a number of iterations of drawing into
**x alternate frames of the double-buffered screen. Note that the
** opject is drawn in color 1.

*/

VOID runDBuff (struct Screen *screen, struct BitMap **myBitMaps)

{

WORD ktr, xpos, ypos;

WORD toggleFrame;

toggleFrame = 0;
SetAPen (& (screen->RastPort), 1);

for (ktr = 1; ktr < 200; ktr++
{
/* Calculate a position to place the object, these
** calculations insure the object will stay on the screen
** given the range of ktr and the size of the object.
*/
Xpos = ktr;
if ((ktr % 100) >= 50)
ypos = 50 - (ktr % 50);
else
ypos = ktr % 50;

/* switch the bitmap so that we are drawing into the correct place */
screen->RastPort.BitMap = myBitMaps[toggleFrame];
screen->ViewPort.RasInfo->BitMap = myBitMaps([toggleFrame];

/* Draw the objects.

** Here we clear the old frame and draw a simple filled rectangle.
*/

SetRast (& (screen->RastPort), 0);

RectFill (& (screen->RastPort), xpos, ypos, Xpos+100, ypos+100);

/* update the physical display to match the newly drawn bitmap. */

MakeScreen(screen); /* Tell intuition to do its stuff. */
RethinkDisplay(); /* Intuition compatible MrgCop & LoadView */
/* it also does a WaitTOF (). */

/* switch the frame number for next time through */
toggleFrame “= 1;
}

Intuition Screens

69

/*

** freeBitMaps(): free up the memory allocated by setupBitMaps().

*/

VOID freeBitMaps(struct BitMap **myBitMaps, LONG depth, LONG width, LONG height)
{

freePlanes (myBitMaps (0], depth, width, height);

freePlanes (myBitMaps{1l]), depth, width, height});

FreeMem (myBitMaps (0], (LONG)sizeof(struct BitMap));

FreeMem (myBitMaps (1], (LONG)sizeof (struct BitMap));

}

/t

** setupPlanes(): allocate the bit planes for a screen bit map.
*/

LONG setupPlanes(struct BitMap *bitMap, LONG depth, LONG width, LONG height)

{
SHORT plane num ;

for (plane_num = 0; plane num < depth; plane_num++)
{

bitMap->Planes[plane num] = (PLANEPTR)AllocRaster (width, height);
if (bitMap->Planes{plane num] != NULL

BltClear (bitMap->Planes[plane num], (width / 8) * height, 1);
else

{
freePlanes (bitMap, depth, width, height);
return (NULL) ;
}
}
return(TRUE);

}

/*

** freePlanes(): free up the memory allocated by setupPlanes().

*/

VOID freePlanes (struct BitMap *bitMap, LONG depth, LONG width, LONG height}

{
SHORT plane_num ;

for (plane_num = 0; plane num < depth; plane_ num++
{
if (bitMap->Planes[plane_num] != NULL)
FreeRaster (bitMap->Planes[plane num], width, height);
}

DUAL-PLAYFIELD SCREEN EXAMPLE

This example shows how to create a dual-playfield display. Note that this technique is only valid for screen
modes which support dual-playfield, do not try to convert other modes.

Setting up dual playfield mode in the OpenScreen() call is not the best method of obtaining a dual playfield
viewport for a screen. It is better to open a standard screen, passing to Intuition (or letting Intuition create)
only one of the playfield bitmaps (the front one). Next allocate and set up a second bitmap, its bitplanes,
and a RaslInfo structure installing these into the new screen’s viewport. Update the viewport modes to
include DUALPF and call MakeScreen() and RethinkDisplay(). This method, shown in the example
below, keeps Intuition rendering (gadgets, menus, windows) in a single playfield.

/* dualplayfield.c

** Shows how to turn on dual-playfield mode in a screen.
* *

** SAS/C 5.10a

** lc =-bl -cfist ~-v -y dualplayfield

** blink FROM LIB:c.o dualplayfield.o TO dualplayfield LIB LIB:lc.lib LIB:amiga.lib
*/

#define INTUI_V36_NAMES ONLY

70 Amiga ROM Kernel Reference Manual: Libraries

#include <exec/types.h>

#include <exec/memory.h>

#include <intuition/intuition.h>
#include <graphics/displayinfo.h>

#include <clib/exec_protos.h>
#include <clib/intuition protos.h>
#include <clib/graphics_protos.h>

VOID doDualPF (struct Window *);

BOOL installDualPF(struct Screen *, struct RastInfo *);
VOID drawSomething(struct RastPort *);

VOID handleIDCMP (struct Window *);

VOID removeDualPF(struct Screen *s);

struct Library *IntuitionBase;
struct Library *GfxBase;

VOID main(int argc, char **argv)
{

struct Window *win;

struct Screen *scr;

IntuitionBase = OpenLibrary ("intuition.library",37);
if (IntuitionBase != NULL)
{
GfxBase = OpenLibrary ("graphics.library", 37);
if (GfxBase != NULL)
{
scr = OpenScreenTags (NULL,
SA_Depth, 2

’
SA DisplayID, HIRES KEY,
SA Title, "Dual Playfield Test Screen"
TAG_END) ;

if (scr != NULL)
{
win = OpenWindowTags (NULL,

WA Title, "Dual Playfield Mode",
WA_IDCMP, IDCMP CLOSEWINDOW,
WA_Width, 200,

WA_Height, 100,

WA_DragBar, TRUE,

WA_CloseGadget, TRUE,
WA_CustomScreen, scr,
TAG_END) ;
if (win != NULL)
{
doDualPF (win);

CloseWindow (win);
}
CloseScreen (scr);
}
Closelibrary (GfxBase) ;
}

Closelibrary(IntuitionBase);

}

/*

** Allocate all of the stuff required to add dual playfield to a screen.
*/

VOID doDualPF (struct Window *win)

{

struct Screen *myscreen;

struct RasInfo *rinfo2;

struct BitMap *bmap2;

struct RastPort *rport2;

myscreen = win->WScreen; /* Find the window’s screen */

/* Allocate the second playfield’s rasinfo, bitmap, and bitplane */

rinfo2 = (struct RasInfo *) AllocMem(sizeof (struct RasInfo), MEMF PUBLIC | MEMF CLEAR);

if (rinfo2 != NULL)
{

Intuition Screens 71

/* Get a rastport, and set it up for rendering into bmap2 */
rport2 = (struct RastPort *) AllocMem(sizeof (struct RastPort}), MEMF_PUBLIC };
if (rport2 != NULL

{
bmap2 = (struct BitMap *) AllocMem(sizeof (struct BitMap), MEMF_PUBLIC | MEMF_CLEAR) ;

if (bmap2 != NULL)

{
InitBitMap(bmap2, 1, myscreen->Width, myscreen->Height);

/* extra playfield will only use one bitplane here. */
bmap2->Planes[0] = (PLANEPTR) AllocRaster (myscreen->Width, myscreen->Height);
if (bmap2->Planes[0] != NULL

{

InitRastPort (rport2);

rport2->BitMap = rinfo2->BitMap = bmap2;

SetRast (rport2, 0};

if (installDualPF (myscreen,rinfo2))
{
/* Set foreground color; color 9 is color 1 for
** second playfield of hi-res viewport
*/
SetRGB4 (émyscreen->ViewPort, 9, 0, OxF, 0);

drawSomething (rport2);
handleIDCMP (win);

removeDualPF (myscreen);
Free;aster(bmap2—>Planes[O], myscreen->Width, myscreen->Height);
Free;em(bmapz, sizeof (struct BitMap));
Freeéem(rport2, sizeof (struct RastPort));
Free;em(rinfOZ, sizeof (struct RasInfo));

}

/*
** Manhandle the viewport:

** install second playfield and change modes

*/

BOOL installDualPF (struct Screen *scrn, struct RastInfo *rinfo2)
{

ULONG screen_modeID;

BOOL return_code = FALSE;

screen_modeID = GetVPModelID (& (scrn->ViewPort));
if(screen_modeID != INVALID_ID)

{
/* you can only play with the bits in the Modes field

** if the upper half of the screen mode ID is zero!!!
*/
if ((screen modeID & OXFFFF000OL) == QL)

{
return_code = TRUE;

Forbid();

/* Install rinfo for viewport’s second playfield */
scrn->ViewPort.RasInfo->Next = rinfo2;
scrn->ViewPort.Modes |= DUALPF;

Permit ();

/* Put viewport change into effect */
MakeScreen(scrn);
RethinkDisplay();
}
}
return({return_code};

}

72 Amiga ROM Kernel Reference Manual: Libraries

/*

** Draw some lines in a rast port...This is used to get some data into
** the second playfield. The windows on the screen will move underneath
** these graphics without disturbing them.

*/

VOID drawSomething(struct RastPort *rp)

{

int width, height;

int r, c;

width = rp->BitMap->BytesPerRow * 8;
height = rp->BitMap->Rows;

SetAPen(rp, 1);

for (r = 0; r < height; r += 40)
{
for (¢ = 0; c < width; c += 40)
{
Move (rp, OL, r);
Draw(rp, ¢, OL);
}

}

/ﬂ

** gimple event loop to wait for the user to hit the close gadget
** on the window.

*/

VOID handleIDCMP (struct Window *win)

{

BOOL done = FALSE;

struct IntuiMessage *message = NULL;

ULONG class;

ULONG signals;

while (!done)
{
signals = Wait (1L << win->UserPort->mp_SigBit);
if (signals & (1L << win->UserPort->mp_ SigBit})
{
while ((!done) &&
(message = (struct IntuiMessage *)GetMsg(win->UserPort)))
{
class = message->Class;
ReplyMsg ((struct Message *)message);

switch (class)
{
case IDCMP_CLOSEWINDOW:
done = TRUE;
break;

}

/*

** remove the effects of installDualPF().
** only call if installDualPF () succeeded.
*/

VOID removeDualPF (struct Screen *scrn)

{

Forbid();

scrn->ViewPort.RasInfo->Next = NULL;
scrn->ViewPort.Modes &= “DUALPF;

Permit {);
MakeScreen(scrn);

RethinkDisplay():
}

Intuition Screens 73

Other Screen Functions

Other screen functions provided by Intuition control screen depth arrangement, screen movement, the
screen title bar and provide a visual ‘‘error beep’’.

SCREEN DEPTH ARRANGEMENT

ScreenToFront() and ScreenToBack() make a screen either the frontmost or the backmost screen. If an
application needs to render into a screen before the screen becomes visible to the user, the screen may be
opened behind all other screens and later moved to the front when ready with ScreenToFront().

VOID ScreenToFront (struct Screen *)
VOID ScreenToBack (struct Screen *)

Depth control of screens is also available through the depth arrangement gadget in the screen’s title bar or
through keyboard shortcuts. The N key with the Left-Amiga qualifier moves the Workbench screen to
front. The M key with the Left-Amiga qualifier moves the frontmost screen to back. Repeated selection of
Left-Amiga-M will cycle through available screens. These keys are processed through the keymap and will
retain their value even if the key location changes.

SCREEN MOVEMENT AND SCROLLING

The MoveScreen() function moves the screen origin by the number of pixels specified in dx and dy.

VOID MoveScreen(struct Screen *myscreen, WORD dx, WORD dy)

Calls to MoveScreen() are asynchronous; the screen is not necessarily moved upon return of this function.
If the calls happen too quickly, there may be unexpected results. One way to pace these calls is to call the
function one time for each IDCMP_INTUITICKS event.

Screen movement is also available through the screen’s drag gadget in the title bar and through a
keyboard/mouse shortcut. Left-Amiga with the select button of the mouse anywhere within the screen will
drag the screen (even if the title bar is totally concealed by a window). Dragging a screen down will reveal
any screen(s) behind it. Screens are never revealed to the left, right or bottom of another screen.

Additionally, oversized screens may be moved with the new autoscroll feature of Release 2. With
autoscroll, the screen is automatically scrolled as the pointer reaches one of the edges of the display.
Autoscroll only works on the active screen.

Another screen movement feature added in Release 2 is screen menu snap. When a screen much larger than
the viewing area is scrolled such that the upper left corner is not visible (scrolled down or to the right),
menus may could be out of the visible portion of the screen. To prevent this, menu snap moves the screen
to a position where the menus will be visible before rendering them. The screen appears to snap to the
home position as the menus are selected, moving back when the operation is complete. If the Left-Amiga
qualifier is held when the menus are selected then the screen will remain in the home position when the
menu button is released.

74 Amiga ROM Kernel Reference Manual: Libraries

The Intuition preferences editor, IControl, allows the user to change a number of Intuition features. Some
of these features include the ability to globally disable menu snap, and to change the select qualifier for
dragging the screen. See the User’s Manual for more information on Preferences editors.

MISCELLANEOUS SCREEN FUNCTIONS

Three other functions used with screens are DisplayBeep(), ShowTitle() and GetScreenData().
DisplayBeep() flashes the screen colors to inform the user of an error or problem.

VOID DisplayBeep{ struct Screen *myscreen

Since not all users will have speakers attached to the system, DisplayBeep() can be used to provide a
visible bell. DisplayBeep() can beep any single screen or, if myscreen is set to NULL, all screens.

ShowTitle() determines whether the screen’s title bar will be displayed in front of or behind any backdrop
windows on the screen.

VOID ShowTitle(struct Screen *myscreen, BOOL infront)

By default, the screen’s title bar is set to display in front of backdrop windows. Call this function with
infront set to FALSE to put the screen title bar behind backdrop windows. This can also be set when the
screen is opened with the SA_ShowTitle tag.

Under 1.3 (V34) and earlier versions of the Amiga OS, applications used the GetScreenData() to get a
copy of the Workbench Screen structure in order to examine its attributes.

success = BOOL GetScreenData(APTR buffer, UWORD bufsize, UWORD type, struct Screen *scr)

If successful, GetScreenData() copies a given Screen structure to a buffer supplied by the application. A
copy of the Workbench Screen data can be obtained without knowing its location in memory using
GetScreenData(buf, sizeof(struct Screen), WBENCHSCREEN, NULL). However, for Release 2 and
later versions of the operating system, this function may return some false information about the
Workbench screen. This false screen information helps prevent older applications that used the call from
malfunctioning when run in a Release 2 system that has Workbench set up with one of the newer modes.

Applications that want to get information on the Workbench screen should use GetScreenData() when run

under 1.3 and LockPubScreen() when run under under Release 2. For more about LockPubScreen() and
Workbench, see the section on ‘‘Public Screen Functions’’ earlier in this chapter.

Intuition Screens 75

Function Reference

The following are brief descriptions of the Intuition functions that relate to the use of Intuition screens. See
the Amiga ROM Kernel Reference Manual: Includes and Autodocs for details on each function call.

Table 3-10: Functions for Intuition Screens

Function Description
OpenScreenTagList() Open a screen.
OpenScreenTags() Alternate calling sequence for OpenScreenTagList().
OpenScreen() Pre-V36 open screen function.
CloseScreen() Close an open screen.
MoveScreen() Change the position of an open screen.
ScreenToBack() Move a screen behind all other screens.
ScreenToFront() Move a screen in front of all other screens.
ShowTitle() Show the screen in front of through backdrop windows.
GetScreenDrawlInfo() Get the DrawInfo information for an open screen.
FreeScreenDrawInfo() Free the DrawInfo information for a screen.
QueryOverscan() Find overscan information for a specific display type.
LockPubScreen() Obtain a lock on a public screen.
UnlockPubScreen() Release a lock on a public screen.
NextPubScreen() Return the name of the next public screen in the list.
PubScreenStatus() Make a public screen private or private screen public.
LockPubScreenList() Lock the public screen list (for a public screen utility).
UnlockPubScreenList() Unlock the public screen list.
SetDefaultPubScreen() Change the default public screen.
SetPubScreenModes() Establish global public screen behavior.
GetDefaultPubScreen() Copies the name of the default public screen to a buffer.
OpenWorkBench() Open the Workbench screen, if closed.
CloseWorkBench() Close the Workbench screen, if possible.
WBenchToBack() Move the Workbench screen behind all other screens.
WBenchToFront() Move the Workbench screen in front of all other screens.
GetScreenData() Pre-V36 way to return information on an open screen.
ViewAddress() Return the address of a screen’s View.
ViewPortAddress() Use &screen->ViewPort instead.
MakeScreen() Low level screen handling--rebuild Copper list.
RethinkDisplay() Low level screen handling--incorporate Copper list changes.
RemakeDisplay() MakeScreen() for all screens, then RethinkDisplay().

76 Amiga ROM Kernel Reference Manual: Libraries

Chapter 4
INTUITION WINDOWS

This chapter provides a general description of windows: how to open windows and define their
characteristics; how to get the system gadgets for shaping, moving, closing, and depth arranging windows;
how to handle window 1/O; and how to preserve the display when windows get overlapped.

About Windows

Windows are rectangular display areas that open on screens. The window acts as a virtual terminal
allowing a program to interact with the user as if it had the entire display all to itself.

Each window opens on a specific screen and takes certain characteristics, such as resolution, colors and
display attributes, from that screen. These values cannot be adjusted on a window by window basis. Other
window characteristics such as the text font are inherited from the screen but can be changed.

An application may open several windows at the same time on a single screen. The Workbench and other
public (shareable) screens allow windows opened by different applications to coexist on the same screen.

Windows are moveable and can be positioned anywhere within the screen on which they exist. Windows
may also have a title and borders containing various gadgets for controlling the window.

WINDOW SYSTEM GADGETS

Each window may have a number of system gadgets which allow the user to control window size, shape
and arrangement. These gadgets are: the drag bar, the depth gadget, the sizing gadget, the zoom gadget and
the close gadget.

The drag bar allows the user to change the position of the window with respect to the screen. The drag bar
is in the top border of a window and occupies any space in the top border that is not used by other gadgets.
The window may be dragged left, right, up and down on the screen, with the limitation that the entire
window must remain within the screen’s boundaries. This is done by positioning the pointer over the title
bar, selecting the window and dragging to the new position. Window drag may be cancelled by pressing
the right mouse button before the drag is completed.

Intuition Windows 77

Close Gadget Drag Bar Zoom Gadget

Tite Bar -

Depth Gadget

Scroll Arrows

Scroll Bar Sizing Gadget

Figure 4-1: A Window with System Gadgets

The depth gadget allows the user to depth arrange a window with respect to other windows on the screen.
The depth gadget is always positioned in the upper right comner of the window. Clicking the depth gadget
will move the frontmost window behind all other windows. If the window is not the frontmost, it will be
moved to the front. Selecting the depth gadget with the Shift qualifier always moves the window to the
back (behind other windows).

The sizing gadget allows the user to change the size of the window. Sizing is subject to minimum and
maximum values set by the application. Width and height are independent in a sizing operation. The
sizing gadget is always positioned in the lower right corner of the window. It allows the user to drag this
corner of the window to a new position relative to the upper left comer of the window, thus changing the
width and height of the window. Window sizing using the sizing gadget may be cancelled by pressing the
right mouse button before the size is completed.

The zoom gadget allows the user to quickly alternate between two preset window size and position values.
The zoom gadget is always placed immediately to the left of the depth gadget. If there is no depth gadget
on the window, the zoom gadget will still appear next to where the depth gadget would have been.

The close gadget performs no dircct action on the window, rather it causes Intuition to send a message to
the application to close the window. This allows the application to perform any required processing or to
wam the user before it closes the window. The close gadget is always positioned in the upper left corner of
the window.

THE ACTIVE WINDOW

There is only one window in the system active at any time. The active window receives all user input,
including keyboard and mouse events. This is also known as the input focus, as all input is focused at this
single point.

78 Amiga ROM Kernel Reference Manual: Libraries

Some areas of the active window are displayed more boldly than those on inactive windows. The active
window’s borders are filled in with a color which is designed to stand out from the background while
inactive windows have their borders filled with the background color. The specific coloring of active and
inactive windows is dependent on the screen on which the window is opened. See the section ‘‘DrawInfo
and the 3D Look’’ in the ‘‘Intuition Screens’’ chapter for more information.

Windows have two optional titles: one for the window and one for the screen. The window title appears in
the top border of the window, regardless of whether the window is active or inactive. The window’s screen
title appears in the screen’s title bar only when the window is active. This gives the user a secondary clue
as to what application is active in the screen.

The active window’s menus are displayed on the screen when the right mouse button (the menu button) is
pressed. If the active window has no menus, then none will be displayed.

Each window may also have its own mouse-pointer image. Changing the active window will change the
pointer to the one currently set for the new active window.

Basic Window Structures and Functions

This section introduces the basic data structures and functions an application uses to create an Intuition
window. Intuition uses the Window data structure defined in <intuition/intuition.h> to represent windows.
Most of Intuition’s window functions use this structure in some way. Other related structures used to create
and operate windows are summarized in Table 4-1.

Table 4-1: Data Structures Used with Intuition Windows

Structure Name Description Defined in Include File

Window Main Intuition structure that defines a window <intuition/intuition.h>

Tagltem General purpose parameter structure used to set up <utility/tagitem.h>
windows in V37

NewWindow Parameter structure used to create a window in V34 <intuitionlintuition.h>

ExtNewWindow An extension to the NewWindow structurc used in <intuition/intuition.h>
V37 for backward compatibility with older systems

Layer A drawing rectangle that clips graphic operations <graphics/clip.h>
falling within its boundaries

RastPort General purpose handle used for graphics library <graphicsi/rastport.h>
drawing operations.

Intuition’s window system relies on the layers library and graphics library to implement many of its
features. The Window structure is closely related to the Layer structure defined in <graphics/clip.h> and
the RastPort structure defined in <graphicsirastport.h>. The system uses these structures to store drawing
state data. In general, applications don’t have to worry about the internal details of these structures but use
them instead as convenient handles, passing them as arguments to lower-level functions. See the ‘‘Layers
Library”’ and ‘‘Graphics Primitives’’ chapters for more information.

Intuition Windows 79

OPENING A WINDOW

A window is opened and displayed by a call to one of the OpenWindow() functions: OpenWindow(),
OpenWindowTagList() or OpenWindowTags().

struct Window *OpenWindowTagList(struct NewWindow *newWindow, struct TagItem *tagList);
struct Window *OpenWindowTags(struct NewWindow *newWindow, unsigned long taglType, ...);
struct Window *OpenWindow(struct NewWindow *newWindow);

The type of window and its attributes are specified in NewWindow or TagItem structures depending on
which function is used. These functions all return a pointer to a new Window structure if they succeed. A
NULL return indicates failure.

OpenWindowTagList() and OpenWindowTags() are available only in Release 2 (V36) and later versions
of the OS. For these functions, window attributes are specified in Tagltem structures which are paired data
items specifying an attribute and its setting. (See the ‘Utility Library’ chapter for more information on
Tagltems.)

OpenWindow() is available in all versions of the OS. Window attributes can be specified using a
NewWindow structure but only a limited set of window attributes are available this way. To support both
the new window features of Release 2 and compatibility with older versions of the OS, use OpenWindow()
with an extended version of the NewWindow structure named ExtNewWindow. See the
WFLG_NW_EXTENDED flag description in the ‘‘Window Attributes’ section below for more
information on using OpenWindow() with the extended NewWindow structure.

Further references to OpenWindow() in this chapter will apply to all three functions. These calls are the
only proper method for allocating a Window structure. The tag based versions are recommended for V36
and later versions of the OS. Use the ExtNewWindow structure with OpenWindow() to provide
backward compatibility.

OpenWindowTagList() Example

Here’s an example showing how to open a new window using the OpenWindowTagList() function with
window attributes set up in a Tagltem array.

;/* openwindowtags.c -~ Execute me to compile me with SAS C 5.10

LC -bl -cfistq -v -y -j73 openwindowtags.c

Blink FROM LIB:c.o,openwindowtags.o TO openwindowtags LIBRARY LIB:LC.lib,LIB:Amiga.lib
quit

* *

** openwindowtags.c - open a window using tags.

*/

#define INTUI_V36_ NAMES_ONLY

#include <exec/types.h>

#include <intuition/intuition.h>
#include <intuition/intuitionbase.h>
#include <intuition/screens.h>

#include <clib/exec_protos.h>
#include <clib/dos_protos.h>

#include <clib/intuition protos.h>

#ifdef LATTICE

int CXBRK (void) { return(0); } /* Disable Lattice CTRL/C handling */
int chkabort (void) { return(0); } /* really */
#endif

80 Amiga ROM Kernel Reference Manual: Libraries

#define MY WIN_LEFT (20)
#define MY WIN_TOP (10)
#define MY WIN WIDTH (300)
#define MY WIN HEIGHT (110)

void handle_window_events (struct Window *);
struct Library *IntuitionBase;

struct Tagltem win_tags[] =
{

{WA_Left, MY WIN LEFT},
{WA_Top, MY WIN_TOP},
{WA_Width, MY WIN WIDTH},
{WA_Height, MY WIN HEIGHT},
{WA_CloseGadget,TRUE},

{WA_IDCMP, IDCMP_CLOSEWINDOW},

{TAG_DONE, NULL},
bi

/it

** Open a simple window using OpenWindowTagList ()
*/

VOID main(int argc, char **argv)

{

struct Window *win;

/* these calls are only valid if we have Intuition version 37 or greater */
IntuitionBase = OpenLibrary("intuition.library",37);
if (IntuitionBase!=NULL)
{
win = OpenWindowTagList (NULL,win_tags);
if (win==NULL)
{
/* window falled to open */
}
else
{
/* window successfully opened here */
handle_window_events (win);

CloseWindow (win) ;
}
Closelibrary((struct Library *)IntuitionBase);
}
}

/* Normally this routine would contain an event loop like the one given

** in the chapter "Intuition Input and Output Methods". Here we just
** wait for any messages we requested to appear at the Window’s port.
*/

VOID handle window_events (struct Window *win)
{

WaitPort (win->UserPort);
}

Setting Window Attributes

Depending on which function is used to open a window, the window’s attributes may be specified using
Tagltems, or a NewWindow structure or an ExtNewWindow structure. In the code above, the window
attributes are set up with an array of TagItems:

struct TagItem win_tags([] =
{

{WA_Left, MY WIN_LEFT},
{WA_Top, MY WIN_TOP},
(WA_width, MY _WIN WIDTH},
{WA_Height, MY WIN HEIGHT},
{WA_CloseGadget, TRUE},

{WA_IDCMP, IDCMP_CLOSEWINDOW},

{TAG_DONE, NULL},
)i

Intuition Windows 81

These window attributes set the window’s position (WA_Left, WA_Top) and size (WA_Width,
WA_Height), request a close gadget on the window (WA_CloseGadget) and ask Intuition to send a
message whenever the user activates the close gadget (WA_IDCMP).

Throughout this chapter window attributes are referred to by their TagItem ID name (the name is always
prefixed with ““WA_""). See the section below on ‘“Window Attributes’’ for a complete list.

Old and New Flag Names. The names used for IDCMP flags and window flags have been
changed under Release 2. IDCMP flag names are now preceded by ““‘IDCMP_"’. Likewise
window flag names are now preceded by ‘‘“WFLG_’’. The old names (and their new
equivalents) are listed in <intuition/iobsolete.h>. You may want to refer to this file if you are
working with example code written for V34 and older versions of the OS.

CLOSING WINDOWS

Call the CloseWindow() function to close a window, remove its imagery from the display, and clean up
any system resources used by the window. Typically, you call CloseWindow() when Intuition informs you
that the user has selected the window’s close gadget but this is not a requirement nor does the window have
to be active to be closed.

void CloseWindow(struct Window *window);
Pass this function a pointer to the Window structure returned by one of the OpenWindow() calls.

If you call CloseWindow() on the active window, the previously active window (if available) will become
the active window. If the previously active window has already closed, then the window active prior to that
window will become the active window. (Applications should not rely on this behavior. To make a
specific window become active, call the ActivateWindow() function.)

Intuition does not automatically close a window when the user selects the close window gadget. Instead,
Intuition sends your program a message about the user’s action. The program can then perform whatever
cleanup is necessary before closing the window with the CloseWindow() function.

WINDOWS AND SCREENS

Windows may be opened on one of three screen types: a custom screen, a public screen or the Workbench
screen. A custom screen is one created and controlled by your application. Once you have set up a custom
screen, you may open a window on it directly by calling one of the three open window functions.

To open a window on a custom screen, call OpenWindowTagList() (or OpenWindowTags()) with the
WA_CustomScreen tag along with a pointer to the custom screen. This must be a pointer to a screen
created by your application. For systems prior to Release 2, use the OpenWindow() call with
NewWindow.Type set to CUSTOMSCREEN and NewWindow.Screen sct to a pointer to your custom
screen.

You may choose to open a window on an existing public (shareable) screen instead of setting up your own

custom screen. Such windows are often referred to as visitor windows because they *‘visit’’ a screen
managed by the system or another application.

82 Amiga ROM Kernel Reference Manual: Libraries

For Workbench or other public screens that are not created and managed directly by your application, you
must lock the screen before opening the window. This ensures that the screen remains open while your call
to open the window is processed. One way to obtain a lock on a public screen is by calling the
LockPubScreen() function (see the ‘‘Intuition Screens’’ chapter).

Use WA_PubScreenName with NULL to open a visitor window on the default public screen (normally the
Workbench screen). If a name is provided and the named screen exists, the visitor window will open on
that named screen. In this case the system locks the named screen for you so there is no need to call
LockPubScreen() directly. The open window call will fail if it cannot obtain a lock on the screen. If the
WA_PubScreenFaliBack tag is TRUE, the window will open on the default public screen when
WA_PubScreenName can’t be found.

Another method to open a visitor window on a public screen is to use the WA_PubScreen tag along with a
pointer to the Screen structure of the public screen obtained via LockPubScreen().

The application may also request the name of the ‘‘next’” public screen, which allows windows to *‘jump”’
between public screens. This is done by closing the application window on the first screen and opening a
new window on the next screen. (See the “‘Intuition Screens’ chapter for more information on public and
custom screens.)

If no action is taken by the programmer to open the window on a specific screen, the window will open on
the default public screen (normally the Workbench). This behavior is shown in the above example using
OpenWindowTagList().

There are two global modes which come into play when a visitor window is opened on a public screen. If
the global mode SHANGHALI is set, Workbench application windows will be opened on the default public
screen. A second global mode, POPPUBSCREEN, forces a public screen to be moved to the font when a
visitor window opens on it. These modes can be changed using SetPubScreenModes(), however, these
should only be set according to the preferences of the user.

Simple Window on a Public Screen Example

;/* winpubscreen.c - Execute me to compile me with SAS C 5.10

LC -bl -cfistq -v -y -j73 winpubscreen.c

Blink FROM LIB:c.o,winpubscreen.,o TO winpubscreen LIBRARY LIB:LC.lib,LIB:Amiga.lib
quit

* *

** winpubscreen.c

** open a window on the default public screen (usually the Workbench screen)

*/

$define INTUI_V36_NAMES_ONLY

#include <exec/types.h>
#include <intuition/intuition.h>

#include <clib/exec_protos.h>
#include <clib/intuition_protos.h>

#ifdef LATTICE

int CXBRK (void) { return(0); } /* Disable Lattice CTRL/C handling */
int chkabort (void) { return(0); } /* really */
#endif

struct Library *IntuitionBase;

/* our function prototypes */
VOID handle window _events (struct Window *win);

Intuition Windows 83

/t

** Open a simple window on the default public screen,

** then leave it open until the user selects the close gadget.
*/

VOID main{int argc, char **argv)

{

struct Window *test_window = NULL;

struct Screen *test _screen = NULL;

[l

IntuitionBase = OpenLibrary{"intuition.library",37);
if (IntuitionBase)

{
/* get a lock on the default public screen */

if (test_screen = LockPubScreen (NULL})
{
/* open the window on the public screen */
test_window = OpenWindowTags (NULL,

WA Left, 10, WA_Top, 20,

WA Width, 300, WA_Height, 100,

WA DragBar, TRUE,

WA _CloseGadget, TRUE,
WA_SmartRefresh, TRUE,
WA_NoCareRefresh, TRUE,

WA_IDCMP, IDCMP_CLOSEWINDOCW,
WA Title, "Window Title",
WA_PubScreen, test_screen,
TAG_END) ;

/* Unlock the screen. The window now acts as a lock on
** the screen, and we do not need the screen after the
** window has been closed.

*/

UnlockPubScreen (NULL, test_screen);

/* if we have a valid window open, run the rest of the
** program, then clean up when done.
*/
if (test_window)
{
handle window_events(test window);
CloseWindow (test window);
}
}
Closelibrary(IntuitionBase);
}
}

/*

** Wait for the user to select the close gadget.
*/

VOID handle_window_events {struct Window *win)

{

struct IntuiMessage *msg;

BOOL done = FALSE;

while (! done)
{
/* We have no other ports of signals to wait on,
** so we’ll just use WaitPort () instead of Wait ()
i‘/
WaitPort (win->UserPort);

while ((! done) &&
(msg = (struct IntuiMessage *)GetMsg(win->UserPort)))
{

/* use a switch statement if looking for multiple event types */

if (msg->Class == IDCMP_CLOSEWINDOW)
done = TRUE;

ReplyMsg{ (struct Message *)msg);
}

84 Amiga ROM Kernel Reference Manual: Libraries

GRAPHICS AND TEXT IN WINDOWS

Applications can call functions in both the graphics library and the Intuition library to render images, lines,
text and other graphic elements in windows. The graphics library provides primitive operations such as
area fill, line drawing, text and animation.

The number of colors and the palette available in a window are defined by the screen in which the window
opens. Applications should never change the palette of a screen unless the screen is a custom screen
created by the application.

Graphics rendered into the window should respect the drawing pens defined for the screen. See the section
on ‘‘DrawInfo and the 3D Look’’ in the ‘‘Intuition Screens’’ chapter for more information.

Default window fonts come from one of two places, depending on the screen on which the window opens.
The window title font is always taken from the screen font. If the screen is opened with a font specified,
either by specifying the tag SA_Font or the variable NewScreen.Font, then Window.RPort->Font is
taken from the screen’s font. Otherwise, the window’s rastport’s font is taken from GfxBase-
>DefaultFont. This information is available to the application if it opened the screen.

If the application did not open the screen, it has no way of knowing which font has been used for the
window. Applications that require to know the window’s font before the window is open must explicitly
sct the font (using SetFont()) for that window after opening it. In this case, the application may use any
font it desires. It is recommended that applications use the screen’s font if they support proportional fonts,
and GfxBase->DefaultFont othcrwise, as these fonts are generally the user’s preference.

Intuition also provides a minimal high level interface to some of the functions in the Graphics library. This
includes calls to draw lines, text and images. See the chapter entitled *‘Intuition Images, Line Drawing and
Text,” for more information about using Intuition to render graphics.

WINDOW DIMENSIONS

The initial position and dimensions of the window are defined in the OpenWindowTagList() call. These
values undergo error checking before the window is actually opened on the screen. If the dimensions are
too big, the window will fail to open. (Or, you can use the WA_AutoAdjust tag if you want Intuition to
move or size your window to fit.)

Maximum and minimum size values may also be defined, but are not required If the window does not have
a sizing gadget. In setting these dimensions, bear in mind the horizontal and vertical resolutions of the
screen in which the window will open.

The maximum dimensions of the window are unsigned values and may legally be sct to the maximum by

using the value OxFFFF, better expressed as ‘“"0°’. Using this value for the maximum dimensions allows
the window to be sized to the full screen.

Intuition Windows 85

A Display Sized Window Example

A full screen window is not always desirable. If the user is working on a large, scrolling screen, they may
only want a window the size of the visible display. The following example calculates the visible area on a
screen and opens a window in that area. The example assumes that the screen display clip is as large or
larger than text overscan (OSCAN_TEXT) which is set by the user. The window is opened in the text
overscan area, not within the actual display clip that is used for the screen. Use QueryOverscan() to find
the standard overscan rectangles (display clips) for a screen. Use the graphics library call VideoControl()
to find the true display clip of the screen (see the chapter on ‘‘Graphics Primitives’’ for more information
on VideoControl()). The ViewPortExtra structure contains the display clip information.

About Screen Coordinates. The screen’s actual position may not exactly equal the
coordinates given in the LeftEdge and TopEdge fields of the Screen structure. This is due to
hardware constraints that limit the fineness of the positioning of the underlying constructs.
This may cause a window which is opened in the visible part of the screen to be incorrectly
positioned by a small number of pixels in each direction. See the discussion of the screen’s
LeftEdge and TopEdge in the ‘‘Intuition Screens’” chapter for more information.

;/* visiblewindow.c - Execute me to compile me with SAS C 5.10

LC -bl -cfistq -v -y -j73 visiblewindow.c

Blink FROM LIB:c.o,visiblewindow.o TO visiblewindow LIBRARY LIB:LC.lib,LIB:Amiga.lib
quit

* K

** open a window on the visible part of a screen, with the window as large

** as the visible part of the screen. It is assumed that the visible part

** of the screen is OSCAN_TEXT, which how the user has set their preferences.

*/

#define INTUI V36 NAMES ONLY

#include <exec/types.h>

#include <intuition/intuition.h>
#include <intuition/intuitionbase.h>
#include <graphics/displayinfo.h>

#include <clib/exec_protos.h>
#include <clib/intuition_protos.h>

#include <clib/graphics_protos.h>

#ifdef LATTICE

int CXBRK(void) { return(0); } /* Disable Lattice CTRL/C handling */
int chkabort (void) { return(0); } /* really */
#endif

/* Minimum window width and height:

** These values should really be calculated dynamically given the size
** of the font and the window borders. Here, to keep the example simple
** they are hard-coded values.

*/

#define MIN_WINDOW WIDTH (100)

#define MIN_WINDOW HEIGHT (50)

/* minimum and maximum calculations...Note that each argument is
** evaluated twice (don’t use max(at+,foo(c))).

*/

#define max(a,b) ((a)>(b)2(a): (b))

#define min(a,b) ((a)<=(b)2(a): (b))

struct Library *IntuitionBase;
struct Library *GfxBase;

/* our function prototypes */
VOID handle window_events(struct Window *win);
VOID fullScreen (VOID);

/*

86 Amiga ROM Kernel Reference Manual: Libraries

** open all the libraries and run the code. Cleanup when done.
*
VéID main(int argc, char **argv)
;* these calls are only valid if we have Intuition version 37 or greater */
if (GfxBase = Openlibrary (“graphics.library",37))
if (IntuitionBase = OpenLibrary("intuition.library",37)
{

fullScreen();

Closelibrary(IntuitionBase);
}

Closelibrary (GfxBase);

}

/t

** Open a window on the default public screen, then leave it open until the
** user selects the close gadget. The window is full-sized, positioned in the
** currently visible OSCAN_TEXT area.

*/

VOID fullScreen (VOID)

{

struct Window *test window;

struct Screen *pub screen;

struct Rectangle rect;

ULONG screen _modelD;

LONG width, height, left, top;

left = 07 /* set some reasonable defaults for left, top, width and height. */
top = 0; /* we’ll pick up the real values with the call to QueryOverscan(). */
width = 640;

height= 200;

/* get a lock on the default public screen */

if (NULL != (pub_screen = LockPubScreen (NULL)))
{
/* this technique returns the text overscan rectangle of the screen that we
** are opening on. If you really need the actual value set into the display
** clip of the screen, use the VideoControl () command of the graphics library
** to return a copy of the ViewPortExtra structure. See the Graphics
** library chapter and Autodocs for more detalils.
* *
** GetVPModeID() is a graphics call...
*/

screen_modeID = GetVPModelID (§pub_screen->ViewPort);
if (screen_modeID != INVALID_ID)
{
if (QueryOverscan(screen modeID, &rect, OSCAN_TEXT))
{
/* make sure window coordinates are positive or zero */
left = max(0, -pub screen->LeftEdge);
top = max(0, -pub_screen->TopEdge);

/* get width and height from size of display clip */
width = rect . MaxX - rect.MinX + 1;
height = rect.MaxY - rect.MinY + 1;

/* adjust height for pulled-down screen (only show visible part) */
if (pub_screen->TopEdge > 0)
height -= pub_screen->TopEdge;

/* insure that window fits on screen */
height = min(height, pub_ screen->Height);
width = min(width, pub_screen->Width);

/* make sure window is at least minimum size */
width = max{(width, MIN WINDOW WIDTH);
height = max(height, MIN WINDOW HEIGHT) ;
}
}

/* open the window on the public screen */

Intuition Windows 87

test_window = OpenWindowTags (NULL,

WA _Left, left, WA_Width, width,
WA_Top, top, WA_Height, height,
WA_CloseGadget, TRUE,

WA_IDCMP, IDCMP_CLOSEWINDOW,
WA_PubScreen, pub_screen,

TAG_END) ;

/* unlock the screen. The window now acts as a lock on the screen,
** and we do not need the screen after the window has been closed.
*/

UnlockPubScreen (NULL, pub_screen);

/* if we have a valid window open, run the rest of the
** program, then clean up when done.
*/
if (test_window)
{
handle_window_events(test_window);
CloseWindow (test_window);

}

/*

** Wait for the user to select the close gadget.
*/

VOID handle_window_events (struct Window *win)

{

struct IntuiMessage *msg;
BOOL done = FALSE;

while (! done)
{

/* we only have one signal bit, so we do not have to check which

** bit(s) broke the Wait() (i.e. the return value of Wait)
*/
Wait (1L << win->UserPort->mp_SigBit);
while ((! done) &&
(msg = (struct IntuiMessage *)GetMsg(win->UserPort)))

{
/* use a switch statement if looking for multiple event types */
if (msg->Class == IDCMP_CLOSEWINDOW)

done = TRUE;

ReplyMsg((struct Message *)msg);
}

WINDOW BORDER DIMENSIONS

Intuition automatically draws a border around a window unless directed otherwise, such as by setting the
WFLG_BORDERLESS flag. Borderless windows may not have a window title or gadgets in the border
(this includes the standard system gadgets). Otherwise they won’t come out properly borderless.

The size of the border of an open window is available in the Window structure variables BorderLeft,
BorderTop, BorderRight and BorderBottom. Intuition fills these in when the window is opened. To
calculate the window border sizes before the window is opened you use information in the Screen structure
as shown in the next listing.

Gadgets Can Change Border Sizes. The following calculations do not take application
border gadgets into account. If the program adds gadgets into the window’s borders, Intuition
will expand the borders to hold the gadgets.

88 Amiga ROM Kernel Reference Manual: Libraries

if (NULL != (screen = LockPubScreen (NULL)))
{
top border
left_border
right_border
bottom_border

screen->WBorTop + screen->Font->ta_YSize + 1;
screen->WBorLeft;

screen->WBorRight;

screen->WBorBottom;

LU |)

UnlockPubScreen (NULL, screen});

}

/* if the sizing gadget is specified, then the border size must

** pe adjusted for the border containing the gadget. This may

** be the right border, the bottom border or both.

* %

** We are using fixed values. There is currently no system-approved
** method of finding this information before the window is opened.
** 1f you need to know these sizes BEFORE your window is opened,

** use the fixed values below. Otherwise, use Window->BorderRight,
** etc. AFTER you have opened your window.

*/

/* values for non-lo-res screen */
right border = 18; /* if sizing gadget in right border */
bottom border = 10; /* if sizing gadget in bottom border */

/* values for lo-res screen */
right _border 13; /* 1f sizing gadget in right border */
bottom border 11; /* if sizing gadget in bottom border */

Use the border sizes to position visual elements within the window. Coordinates may be offset into the
window by the size of the top and left borders, for instance (x, y) becomes (x + BorderLeft, y +
BorderTop). This may look clumsy, but it offers a way of avoiding a GimmeZeroZero window, which,
although much more convenient to use, requires extra memory and degrades performance.

The right and bottom border values specify the width of these borders. The arca within the borders of a
window is defined as (BorderLeft, BorderTop) to (Width - 1 - BorderRight, Height - 1 -
BorderBottom). The calculations subtract one from the height and width of the windows as positions
count from zero, but dimensions count from one.

The window title bar is only available if one or more of the following is specified: window title, window
drag gadget, window depth gadget, window close gadget or window zoom gadget. If none of these are
specified, the top border will be much narrower.

Application gadgets may be added to the window border by sctting a flag in the Gadget structure. A
special flag must additionally be set to place gadgets into the borders of GimmeZeroZero windows. See the
chapter ‘‘Intuition Gadgets,”” for more information about gadgets and their positioning. (Borderless
windows have no visible border outlines and gadgets should not be placed in their borders.)

CHANGING WINDOW SIZE LIMITS

To change the sizing limits after the window has been opened, call WindowLimits() with the new values.

BOOL WindowLimits{ struct Window *window, long widthMin, long heightMin,
unsigned long widthMax, unsigned long heightMax);

To maintain the current dimension, set the corresponding argument to 0. Out of range numbers are ignored.
If the user is currently sizing the window, new limits take effect after the user relcases the select button.

Intuition Windows 89

Communicating with Intuition

Intuition can notify an application when the user moves the mouse, makes a menu choice, selects an
application gadget or changes the window’s size. To find out about user activity from Intuition, there are
two methods:

o Use the Intuition Direct Communications Message Port (IDCMP) system. Input events are received as
standard Exec messages at a port Intuition creates for your window.

o Use the console.device to receive all input events as character sequences.

THE IDCMP

The IDCMP gives an application convenient access to many types of user input events through the Exec
message and port system. Intuition input event messages include mouse and keyboard activity as well as
high level events from menus and gadgets.

With the IDCMP, you specify the input events you want to know about when you open the window. The
input events are specified with one or more of the IDCMP flags in <intuition/intuition.h>. Use the flags
with the WA_IDCMP tag for the OpenWindowTagList() (or OpenWindowTags()) function. Or, set the
flags in NewWindow.IDCMPFlags for the OpenWindow() function. If any IDCMP flags are set when
the window is opened, Intuition automatically creates a message port for you to receive messages about
user activity. If NULL is specified for IDCMP flags, no port is created. For more information on receiving
messages from Intuition, see the IDCMP section in the chapter ‘‘Intuition Input and Output Methods.”’

THE CONSOLE DEVICE

An alternative to the message system used by the IDCMP is the console device. The console device gives
your application input data translated to ASCII characters or ANSI escape sequences. Raw (untranslated)
input is also available through the console device as ANSI escape sequences.

The console device also provides for convenient output of control codes and non-proportional (mono-
spaced) text to the window. Output is character based, and includes capabilities such as automatic line
wrapping and scrolling. The console device automatically formats and interprets the output stream. Output
is kept within the window boundaries automatically so the application need not worry about overwriting the
border (no GimmeZeroZero window required).

The console device must be opened by the application before it is used. See the chapter entitled ‘‘Intuition
Input and Output Methods’’ or refer to the ‘“Console Device’’ chapter of the Amiga ROM Kernel Reference
Manual: Devices for more information about using the console device with your Intuition windows.

THE IDCMP AND THE ACTIVE WINDOW

On the Amiga, all input is directed to a single window called the active window. In general, changing the
active window should be left up to the user. (The user activates a window by pressing the select button
while the pointer is within the window boundarics.) If the active window is changed, the user may be
confused if the change was not performed at their direction. Hence, new windows should be activated only
when they open as a direct and synchronous response to the user’s action. Existing windows should almost
never be activated by the application.

90 Amiga ROM Kernel Reference Manual: Libraries

An application can learn when one of its windows is activated or deactivated by setting the IDCMP flags
IDCMP_ACTIVEWINDOW and IDCMP_INACTIVEWINDOW. When these flags are specified, the
program will receive a message each time the user activates the window or causes the window to become
inactive by activating some other window.

The application may specify that a window is to become active when it opens. This is done with the
WA_Activate tag or by setting WFLG_ACTIVATE in NewWindow.Flags when the window is opened.

The application may also activate an existing window. This is done by calling the ActivateWindow()
function, which will activate the window as soon as possible. Try to use this function only in response to
user action since it may cause a shift in the input focus:

LONG ActivateWindow(struct Window *window);

This function call may have its action deferred. Do not assume that the selected window has become active
when this call returns. Intuition will inform the application when this window has become active by
sending an IDCMP_ACTIVEWINDOW message. Getting this message is the only supported way of
tracking the activation status of your windows.

THE IDCMP AND GADGETS

One way for a user to communicate with a program running under Intuition is through the use of gadgets.
There are two basic kinds of gadgets: system gadgets, which are predefined and managed by Intuition, and
application gadgets.

System Gadgets

System gadgets on each window provide the user with the ability to manage the following aspects of the
window: size, position and depth. These gadgets are managed by Intuition and the application does not
need to take any action for them to operate properly. An additional system gadget is provided for the
“‘close window’’ function. The close action is not directly managed by Intuition; selecting the close gadget
will simply send a message to the application, which is responsible for closing the window.

All of these gadgets are optional, and independent of each other. The graphic represcntations of these
gadgets are predefined, and Intuition always displays them in the same standard locations in the window
borders.

The application may choose to be notified when the window changes size, or it may choose to control the
timing of the sizing of the window. Controlling the timing of sizing operations is done through the use of
the IDCMP_SIZEVERIFY message. IDCMP_SIZEVERIFY messages time out if the application does not
respond fast enough. When these an IDCMP_SIZEVERIFY message times out the window sizing
operation is cancelled by Intuition.

No information is available to the program on user changes to the depth arrangement of a window.
However a refresh message will be sent if part of the window needs to be redrawn as a result of a change to
the depth arrangement.

Notification of changes to the position of the window or the size of the window are available through the

IDCMP_CHANGEWINDOW and IDCMP_NEWSIZE flags. The application specifies the initial size, the
maximum and minimum limits for sizing, and whether the sizing gadget is contained in the right border,

Intuition Windows 91

bottom border or both borders. (See the section on ‘‘Border Dimensions’’ for information on how the
specification of the sizing gadget affects the border sizes.)

The drag gadget has no imagery other than the implicit imagery of the title bar. Setting the window title
does not interfere with drag gadget operation, nor does the drag gadget interfere with the display of the
window title.

Application Gadgets

The application may place gadgets in windows to request various kinds of input from the user. These
gadgets may be specified in the OpenWindowTagList() call, or they may be created and added to the
window later. For details about creating and using gadgets, see the chapters on ‘‘Intuition Gadgets’’ and
the ‘‘GadTools Library’’.

Window Types

There are three special window types: Backdrop, Borderless and GimmeZeroZero. Backdrop windows
stay anchored to the back of the display. Borderless windows have no borders rendered by Intuition.
GimmeZeroZero windows provide clipping to protect the borders from graphics rendered into the window.

These window types can be combined, although the combinations are not always useful. For instance, a
borderless, backdrop window can be created; however, a borderless, GimmeZeroZero window does not
make sense. A window is not required to be any of these types.

BACKDROP WINDOW TYPE

Backdrop windows open behind all other non-backdrop windows, but in front of other backdrop windows
that might already be open. Depth arrangement of a backdrop window affects the order of the window
relative to other backdrop windows, but backdrop windows always stay behind all non-backdrop windows.
No amount of depth arrangement will ever move a non-backdrop window behind a backdrop window.

The only system gadget that can be attached to a backdrop window is the closewindow gadget. Application
gadgets are not restricted in backdrop windows.

Backdrop windows may often be used in place of drawing directly into the display memory of a custom
screen. Such a technique is preferred, as backdrop windows are compatible with the Intuition windowing
system. Using a backdrop window eliminates the danger of writing to the screen memory at a ‘‘bad’’ time
or at the wrong position and overwriting data in a window.

To provide a full screen display area that is compatible with the windowing system, create a full sized,
borderless, backdrop window with no system gadgets. Use the ShowTitle() call to hide or reveal the
screen’s title bar, as appropriate. See the Amiga ROM Kernel Reference Manual: Includes and Autodocs
for a complete list of arguments for ShowTitle().

Backdrop windows are created by specifying the WFLG_BACKDROP flag or the WA_Backdrop tag in the
OpenWindowTagList() call.

92 Amiga ROM Kernel Reference Manual: Libraries

BORDERLESS WINDOW TYPE

The borderless window type has no borders rendered by Intuition. Such a window will have no visual
delineation from the rest of the display. Be aware that a Borderless window which does not cover the entire
display may cause visual confusion for the user. When using a borderless window that does not cover the
entire display, the application should provide some form of graphics to replace the borders provided by
Intuition.

In general, none of the system gadgets or the window title should be specified for a borderless window, as
they may cause at least part of the border to be rendered.

A typical application of a borderless window is to simulate graphics drawn directly into the screen, while
remaining compatible with windows and menus. In this case, the application will often create a full sized,
borderless, backdrop window.

Use the WFLG_BORDERLESS flag or the WA_Borderless tag to get this window type.

GIMMEZEROZERO WINDOW TYPE

GimmeZeroZero windows provide a window border layer separate from the main (inner) window layer.
This allows the application to freely render into the window without worrying about the window border and
its contents.

System gadgets and the window title are placed in the border layer. Application gadgets go into the inner
window by default, but may be placed in the border. To position application gadgets in the border layer,
the GTYP_GZZGADGET flag and the appropriate Gadget border flag must be set in the Activation field
of the Gadget.

The top left coordinates of the inner window are always (0,0), regardless of the size or contents of the
border, thus the name ‘‘GimmeZeroZero.”” The application need not take the border size into account
when rendering. The inner window always begins at (0,0) and extends to (GZZWidth,GZZHeight). The
GZZWidth and GZZHeight variables are available in the Window structure.

The GZZMouseX and GZZMouseY variables provide the position of the mouse relative to the inner
window. Note that the mouse positions in IDCMP_MOUSEMOVE events are always relative to the total
window, even for GimmeZeroZero windows.

Requesters in a GimmeZeroZero window are also positioned relative to the inner window. See the chapter
entitled ‘‘Intuition Requesters and Alerts,’” for more information about requester location.

To specify a GimmeZeroZero window, set the WFLG_GIMMEZEROZERO flag or the
WA_GimmeZeroZero tag in the OpenWindowTagList() call.

WARNING! The GimmeZeroZero window uses more system resources than other window
types because the window creates a separate layer for the border display. Using multiple
GimmeZeroZero windows will quickly degrade performance in the positioning and sizing of
windows.

Applications should consider using regions as an alternative to GimmeZeroZero windows. See
the ‘‘Layers Library’’ chapter, especially the InstallClipRegion() function, for information on
setting up regions to limit graphics display in the window.

Intuition Windows 93

Preserving the Window Display

The layers library is what allows the display and manipulation of multiple overlapping rectangles, or layers.
Intuition uses the layers library to manage its windows, by associating a layer to each window.

Each window is a virtual display. When rendering, the application does not have to worry about the current
size or position of its window, and what other windows might be partly or fully obscuring its window. The
window’s RastPort is the handle to the its virtual display space. Intuition and graphics library rendering
calls will recognize that this RastPort belongs to a layer, and act accordingly.

As windows are moved, resized, rearranged, opened, or closed, the on-screen representation changes.
When part of a window which was visible now needs to appear in a new location, the layers library will
move that imagery without involving the application. However, when part of a window that was previously
obscured is revealed, or when a window is made larger, the imagery for the newly-visible part of the
window needs to be redrawn. Intuition, through layers, offers three choices for how this is managed,
trading off speed, memory usage, and application complexity.

o The most basic type of window is called Simple Refresh. When any graphics operation takes place in
this kind of window, the visible parts are updated, but rendering to thc obscured parts is discarded.
When the window arrangement changes to reveal a previously obscured part of such a window, the
application must refresh that area.

o Alternately, a window may be made Smart Refresh, which means that when rendering occurs, the
system will not only update the visible parts of the window, but it will maintain the obscured parts as
well, by using off-screen buffers. This means that when an obscured part of the window is revealed,
the system will restore the imagery that belongs there. The application needs only to refresh parts of
the window that appear when the window is made bigger. Smart Refresh windows use more memory
than Simple Refresh windows (for the storage of obscured areas), but they are faster.

o The third kind of window is called SuperBitMap. In such a window, the system can refresh the
window even when it is sized bigger. For this to work, the application must store a complete bitmap
for the window’s maximum size. Such a window is more work to manage, and uses yet more
memory. SuperBitMap windows are used less often than the other two types.

Intuition helps your application manage window refresh. First, Intuition will take care of redrawing the
window border and any system and application gadgets in the window. Your application never has to
worry about that. Second, Intuition will notify your application when it needs to refresh its window (by
sending the IDCMP_REFRESHWINDOW event). Third, Intuition provides functions that restrict your
rendering to the newly-revealed (damaged) areas only, which speeds up your refresh rendering and makes it
look cleaner.

The Intuition, layers, and graphics libraries work together to make rendering into and managing windows
easy. You obtain your windows through Intuition, which uses the Layers library to manage the
overlapping, resizing, and re-positioning of the window layers. The layers library is responsible for
identifying the areas of each window that are visible, obscured but preserved off-screen, or obscured and
not preserved. The rendering functions in the graphics library and Intuition library know how to render into
the multiple areas that layers library establishes.

94 Amiga ROM Kernel Reference Manual: Libraries

Note that you may not directly manipulate layers on an Intuition screen. You cannot create your own layers
on an Intuition screen, nor can you use the layers movement, sizing, or arrangement functions on Intuition
windows. Use the corresponding Intuition calls instead. Some other Layers library calls (such as the
locking calls) are sometimes used on Intuition screens and windows.

DAMAGE REGIONS

The layers library and Intuition maintain a damage region for each window, which is the part of the
window whose imagery is in need of repair, or refreshing. Several things can add areas of the window to
the damage region:

@ Revealing an obscured part of a Simple Refresh window adds that area to the damage region

o Sizing a Simple or Smart Refresh window bigger along either axis adds the new area to the damage
region

o Resizing a Simple or Smart Refresh window (smaller or bigger) adds the old and new border arcas,
and the areas occupied by certain gadgets (those whose position or size depend on window size) to the
damage region.

REFRESHING INTUITION WINDOWS

When the user or an application performs an Intuition operation which causes damage to a window,
Intuition notifies that window’s application. It does this by sending a message of the class
IDCMP_REFRESHWINDOW to that window’s IDCMP.

In response to this message, your application should update the damaged areas. Rendering proceeds faster
and looks cleaner if it is restricted to the damaged areas only. The BeginRefresh()/EndRefresh() pair
achieve that. The application should call BeginRefresh() for the window, and then do its rendering. Any
rendering that would have gone into undamaged areas of the window is automatically discarded; only the
area in need of repair is affected. Finally, the application should call EndRefresh(), which removes the
restriction on rendering, and informs the system that the damage region has been dealt with. Even if your
application intends to do no rendering, it must at least call BeginRefresh()/EndRefresh(), to inform the
system that the damage region is no longer needed. If your application never needs to render in response to
a refresh event, it can avoid having to call BeginRefresh())EndRefresh() by setting the
WFLG_NOCAREREFRESH flag or the WA_NoCareRefresh tag in the OpenWindowTagList() call.

Note that by the time that your application receives notification that refresh is needed, Intuition will have
already refreshed your window’s border and all gadgets in the window, as needed. Thus, it is unnecessary
to use any of the gadget-refreshing functions in response to an IDCMP_REFRESHWINDOW event.

Operations performed between the BeginRefresh()/EndRefresh() pair should be restricted to simple
rendering. All of the rendering functions in Intuition library and Graphics library are safe. Avoid
RefreshGList() or RefreshGadgets(), or you risk deadlocking the computer. Avoid calls that may lock the
LayerInfo or get complicated in Intuition, since BeginRefresh() leaves the window’s layer or layers locked.
Avoid AutoRequest() and EasyRequest(), and therefore all direct or indirect disk related DOS calls. See
the “‘Intuition Gadgets’” chapter for more information on gadget restrictions with
BeginRefresh()/EndRefresh().

Intuition Windows 95

Simple Refresh

For a Simple Refresh window, only those pixels actually on-screen are maintained by the system. When
part of a Simple Refresh window is obscured, the imagery that was there is lost. As well, any rendering
into obscured portions of such a window is discarded.

When part of the window is newly revealed (either because the window was just made larger, or because
that part used to be obscured by another window), the application must refresh any rendering it wishes to
appear into that part. The application will learn that refresh is needed because Intuition sends an
IDCMP_REFRESHWINDOW event.

Smart Refresh

If a window 1is of the Smart Refresh type, then the system will not only preserve those pixels which are
actually on-screen, but it will save all obscured pixels that are within the current window’s size. The
system will refresh those parts of the window revealed by changes in the overlapping with other windows
on the screen, without involving the application. However, any part of the window revealed through the
sizing of the window must be redrawn by the application. Again, Intuition will notify the application
through the IDCMP_REFRESHWINDOW event.

Because the obscured areas are kept in off-screen buffers, Smart Refresh windows are refreshed faster than
Simple Refresh windows are, and often without involving the application. Of course, for the same reason,
they use more display memory.

SuperBitMap Refresh

The SuperBitMap refresh type allows the application to provide and maintain bitmap memory for graphics
in the window. The bitmap can be any size as long as the window sizing limits respect the maximum size
of the bitmap.

SuperBitMap windows have their own memory for maintaining all obscured parts of the window up to the
size of the defined bitmap, including those parts outside of the current window. Intuition will update all
parts of the window that are revealed through changes in sizing and changes in window overlapping. The
application never needs to redraw portions of the window that were revealed by sizing or positioning
windows in the screen.

SuperBitMap windows require the application to allocate a bitmap for use as off-screen memory, instead of
using Intuition managed buffers. This bitmap must be as large as, or larger than, the inner window’s
maximum dimensions (that is, the window’s outside dimensions less the border sizes).

SuperBitMap windows are almost always WFLG_GIMMEZEROZERO, which renders the borders and
system gadgets in a separate bitmap. If the application wishes to create a SuperBitMap window that is not
GimmeZeroZero, it must make the window borderless with no system gadgets, so that no border imagery is
rendered by Intuition into the application’s bitmap.

96 Amiga ROM Kernel Reference Manual: Libraries

INTUITION REFRESH EVENTS

When using a Simple Refresh or a Smart Refresh windows, the program may receive refresh events,
informing it to update the display. See the above discussion for information on when refresh events are
sent.

A message of the class IDCMP_REFRESHWINDOW arrives at the IDCMP, informing the program of the
need to update the display. The program must take some action when it receives a refresh event, even if it
is just the acceptable minimum action described below.

On receiving a refresh event, BeginRefresh() must be called, then the program should redraw its display,
and, finally, call EndRefresh(). The minimum required action is to call the BeginRefresh()/EndRefresh()
pair. This allows Intuition and the Layers library keep things sorted and organized.

OPTIMIZED WINDOW REFRESHING

Bracketing the display updating in the BeginRefresh()/EndRefresh() pair automatically restricts all
rendering to the ‘‘damaged’’ areas.

void BeginRefresh(struct Window *window };
void EndRefresh (struct Window *window, long complete };

These functions makes sure that refreshing is done in the most efficient way, only redrawing those portions
of the window that really need to be redrawn. The rest of the rendering commands are discarded.

Operations performed between the BeginRefresh()/EndRefresh() pair should be restricted to simple
rendering. All of the rendering functions in Intuition library and Graphics library are safe. Calls to
RefreshGadgets() are not permitted. Avoid calls that may lock the LayerInfo, or get complicated in
Intuition, since BeginRefresh() leaves the window’s layer or layers locked. Avoid AutoRequest(), and
therefore all direct or indirect disk related DOS calls. See the ‘‘Intuition Gadgets’’ chapter for more
information on gadget restrictions with BeginRefresh()/EndRefresh().

Certain applications do not need to receive refresh events, and can avoid having to call BeginRefresh() and
EndRefresh() by sctting the WFLG_NOCAREREFRESH flag or the WA_NoCareRefresh tag in the
OpenWindowTagList() call.

The EndRefresh() function takes a boolean value as an argument (complete in the prototype above). This
value determines whether refreshing is completely finished. When set to FALSE, further refreshing may be
performed between subsequent BeginRefresh()/ EndRefresh() pairs. Set the boolean to TRUE for the last
call to EndRefresh().

It is critical that applications performing multiple BeginRefresh()/EndRefresh() pairs using
EndRefresh(win,FALSE) hold layers locked through the entire process. The layer lock may only be
released after the final call to EndRefresh(win, TRUE). See the ‘‘Layers Library’’ for more details.

The procedures outlined in this section take care of refreshing what is inside the window. Another function
named RefreshWindowFrame() refreshes window borders, including the title region and gadgets:

void RefreshWindowFrame(struct Window *window);

Applications can use this function to update window borders after overwriting them with graphics.

Intuition Windows 97

SETTING UP A SUPERBITMAP WINDOW

SuperBitMap windows are created by setting the WFLG_SUPER_BITMAP flag, or by specifying the
WA_SuperBitMap tag in the OpenWindowTagList() call. A pointer to an allocated and initialized
BitMap structure must be provided.

A SuperBitMap window requires the application to allocate and initialize its own bitmap. This entails
allocating a BitMap structure, initializing the structure and allocating memory for the bit planes.

Allocate a BitMap structure with the Exec AllocMem() function. Then use the graphics function
InitBitMap() to initialize the BitMap structure:

void InitBitMap(struct BitMap *bitMap, long depth, long width, long height);

InitBitMap() fills in fields in the BitMap structure describing how a linear memory area is organized as a
series of one or more rectangular bit-planes.

Once you have allocated and initialized the BitMap structure, use the graphics library function
AllocRaster() to allocate the memory space for all the bit planes.

PLANEPTR AllocRaster(unsigned long width, unsigned long height });

The example listed in the next section shows how to allocate a BitMap structure, initialize it with
InitBitMap() and use AllocRaster() function to set up memory for the bitplanes.

Graphics and Layers Functions for SuperBitMap Windows

The portion of the bitmap showing within a SuperBitMap window is controlled by the application.
Initially, the window shows the bitmap starting from its origin (0,0) and clipped to fit within the window
layer. The visible portion of the bitmap can be scrolled around within the window using the layers library
ScrollLayer() function:

void ScrollLayer (LONG unused, struct Layer *layer, LONG dx, LONG dy)

Pass this function a pointer to the window’s layer in layer and the scroll offsets in dx and dy. (A pointer to
the window’s layer can be obtained from Window.RPort->Layer.)

When rendering operations are performed in a SuperBitMap window, any rendering that falls outside
window boundaries is done in the application’s bitmap. Rendering that falls within window bounds is done
in the screen’s bitmap. Before performing an operation such as a save on the application bitmap, the
graphics library function SyncSBitMap() should be called:

void SyncSBitMap(struct Layer *layer)
Pass this function a pointer to the window’s layer. SyncSBitMap() copies the window contents to the

corresponding part of the application bitmap, bringing it up to date. (If no rendering operations have been
performed this call is not necessary.)

98 Amiga ROM Kernel Reference Manual: Libraries

Similarly, after making any changes to the application bitmap such as loading a new one, the window’s
layer should be locked and the CopySBitMap() function should be called.

void CopySBitMap(struct Layer *)

This function copies the new information in the appropriate area of the underlying bitmap to the window’s
layer.

For more information about bitmaps and layers, see the ‘‘Graphics Primitives’” and ‘‘Layers Library”’
chapters of this manual. Also see the <graphics/clip.h>, <graphics/gfx.h>, <graphics/layers.h >, graphics
library and layers library sections of the Amiga ROM Kernel Reference Manual: Includes and Autodocs.

SuperBitMap Window Example

This example shows how to implement a superbitmap, and uses a host of Intuition facilities. Further
reading of other Intuition and graphics chapters may be required for a complete understanding of this
example.

;/* lines.c - Execute me to compile me with SAS C 5.10

LC -bl -cfistqg -v -y -j73 lines.c

Blink FROM LIB:c.o,lines.o TO lines LIBRARY LIB:LC.lib,LIB:Amiga.lib
quit

** lines.c -- implements a superbitmap with scroll gadgets

** This program requires V37, as it uses calls to OpenWindowTags(),
** LockPubScreen().

*/

/* Enforces use of new prefixed Intuition flag names */
#define INTUI_V36_NAMES_ONLY

#include <exec/types.h>
#include <exec/memory.h>
#include <intuition/intuition.h>

#include <clib/exec_protos.h>
#include <clib/layers_protos.h>
#include <clib/graphics_protos.h>
#include <clib/intuition_protos.h>

/* Random number function in amiga.lib (see amiga.lib.doc) */
UWORD RangeRand(unsigned long maxValue);

#ifdef LATTICE

int CXBRK (void) { return(0); } /* Disable Lattice CTRL/C handling */
int chkabort (void) { return(0); } /* really */

#endif

#define WIDTH_SUPER (800)

#define HEIGHT_SUPER (600)

#define UP_DOWN_GADGET (0)

#define LEFT_RIGHT_ GADGET (1)

#define NO_GADGET (2)

#define MAXPROPVAL (OXFFFFL)
#define GADGETID(X) (((struct Gadget *) (msg->IAddress))->GadgetID)

#define LAYERXOFFSET (x) (x->RPort->Layer->Scroll_X)
#define LAYERYOFFSET(x) (x->RPort->Layer->Scroll_ Y)

/* A string with this format will be found by the version command
** supplied by Commodore. This will allow users to give version
** numbers with error reports.

*/

UBYTE vers[] = "$VER: lines 37.2";

Intuition Windows 99

struct Library *GfxBase;
struct Library *IntuitionBase;
struct Library *LayersBase;

struct Window *Win = NULL; /* window pointer */
struct PropInfo BotGadInfo = {0};

struct Image BotGadImage = {0};

struct Gadget BotGad = {0};

struct PropInfo SideGadInfo = {0};

struct Image SideGadImage = {0};

struct Gadget SideGad = {0};

/* Prototypes for our functions */

VOID initBorderProps{(struct Screen *myscreen);
VOID doNewSize(void);

VOID doDrawstuff (void);

VOID doMsgLoop(void);

VOID superWindow(struct Screen *myscreen);

/*

** main

** Open all required libraries and get a pointer to the default public screen.
** Cleanup when done or on error.

*/

VOID main(int argc, char **argv)

{

struct Screen *myscreen;

/* open all of the required libraries for the program.
* k

** require version 37 of the Intuition library.

*/

if (IntuitionBase = OpenlLibrary ("intuition.library",37L))
{
if (GfxBase = OpenLibrary ("graphics.library",33L))
{
if (LayersBase = OpenlLibrary("layers.library",33L))
{
/* LockPubScreen()/UnlockPubScreen is only available under V36
** and later... Use GetScreenData() under V34 systems to get a
** copy of the screen structure...
*/
if (NULL != (myscreen = LockPubScreen (NULL)))
{
superWindow (myscreen) ;
UnlockPubScreen (NULL, myscreen) ;
}
Closelibrary (LayersBase);
}
Closelibrary (GfxBase);

Closelibrary(IntuitionBase);
}

/*

** Create, initialize and process the super bitmap window.
** Cleanup if any error.

*/

VOID superWindow(struct Screen *myscreen)

{

struct BitMap *bigBitMap;

WORD planeNum;

WORD allocatedBitMaps;

/* set-up the border prop gadgets for the OpenWindow() call. */
initBorderProps (myscreen);

/* The code relies on the allocation of the BitMap structure with
** the MEMF_CLEAR flag. This allows the assumption that all of the
** bitmap pointers are NULL, except those successfully allocated

** by the program.

100 Amiga ROM Kernel Reference Manual: Libraries

*/
if

/*
* %
* %
* %
* *
* *
* %
* %
* %
* %

* %

(bigBitMap = AllocMem(sizeof (struct BitMap), MEMF_PUBLIC | MEMF_CLEAR))

{
InitBitMap(bigBitMap, myscreen->BitMap.Depth, WIDTH_SUPER, HEIGHT_SUPER);

allocatedBitMaps = TRUE;
for (planeNum = 0;
(planeNum < myscreen->BitMap.Depth) && (allocatedBitMaps == TRUE);
planeNum++)

{
bigBitMap->Planes[planeNum] = AllocRaster (WIDTH_SUPER, HEIGHT_SUPER);

if (NULL == bigBitMap->Planes[planeNum])
allocatedBitMaps = FALSE;
}

/* Only open the window if the bitplanes were successfully
** allocated. Fail silently if they were not.
*/
if (TRUE == allocatedBitMaps)
{
/* OpenWindowTags () and OpenWindowTagList () are only available
** when the library version is at least V36. Under earlier
** yersions of Intuition, use OpenWindow() with a NewWindow
** structure.

*/
if (NULL != (Win = OpenWindowTags (NULL,

WA Width, 150,

WA_Height, 4 * (myscreen->WBorTop + myscreen->Font->ta_YSize + 1),

WA_MaxWidth, WIDTH_SUPER,

WA_MaxHeight, HEIGHT_SUPER,

WA _IDCMP, IDCMP_GADGETUP | IDCMP_GADGETDOWN |
IDCMP_NEWSIZE | IDCMP_INTUITICKS | IDCMP_CLOSEWINDOW,

WA Flags, WFLG_SIZEGADGET | WFLG_SIZEBRIGHT | WFLG_SIZEBBOTTOM |
WFLG_DRAGBAR | WFLG_DEPTHGADGET | WFLG_CLOSEGADGET |
WFLG_SUPER_BITMAP | WFLG_GIMMEZEROZERO | WFLG_NOCAREREFRESH,

WA_Gadgets, & (SideGad),

WA Title, &vers([6]), /* take title from version string */

WA_PubScreen, myscreen,

WA_SuperBitMap, bigBitMap,

TAG_DONE)))

{
/* set-up the window display */
SetRast (Win->RPort,0); /* clear the bitplanes */
SetDrMd (Win->RPort, JAM1) ;
doNewSize () ; /* adjust props to represent portion visible */

doDrawStuff ();

/* process the window, return on IDCMP_CLOSEWINDOW */
doMsgLoop () ;

CloseWindow (Win) ;
}
}

for (planeNum = 0; planeNum < myscreen->BitMap.Depth; planeNum++)
{
/* free only the bitplanes actually allocated... */
if (NULL != bigBitMap->Planes[planeNum])
FreeRaster (bigBitMap->Planes[planeNum]), WIDTH_SUPER, HEIGHT_ SUPER});
}
FreeMem (bigBitMap,sizeof (struct BitMap));
}

Set-up the prop gadgets--initialize them to values that fit

into the window border. The height of the prop gadget on the side

of the window takes the height of the title bar into account in its
set-up. note the initialization assumes a fixed size "sizing" gadget.

Note also, that the size of the sizing gadget is dependent on the
screen resolution. The numbers given here are only valid if the
screen is NOT lo-res. These values must be re-worked slightly
for lo-res screens.

Intuition Windows

101

** The PROPNEWLOOK flag is ignored by 1.3.

*/

VOID initBorderProps(struct Screen *myscreen)

{

/* initializes the two prop gadgets.

* *x

** Note where the PROPNEWLOOK flag goes. Adding this flag requires
** no extra storage, but tells the system that our program is

** expecting the new-look prop gadgets under 2.0.

*/

BotGadInfo.Flags = AUTOKNOB | FREEHORIZ | PROPNEWLOOK;
BotGadInfo.HorizPot = 0;

BotGadInfo.VertPot = 0;

BotGadInfo.HorizBody = -1;

BotGadInfo.VertBody = -1;

BotGad.LeftEdge = 3;

BotGad.TopEdge = -7;

BotGad.Width = =23;

BotGad.Height = 6;

BotGad.Flags = GFLG_RELBOTTOM | GFLG_RELWIDTH;
BotGad.Activation = GACT_RELVERIFY | GACT_IMMEDIATE | GACT_BOTTOMBORDER;
BotGad.Gadget Type = GTYP_PROPGADGET | GTYP_GZZGADGET;
BotGad.GadgetRender = (APTR)& (BotGadImage);
BotGad.SpecialInfo = (APTR)& (BotGadInfo);

BotGad.Gadget ID = LEFT_RIGHT_GADGET;

SideGadInfo.Flags = AUTOKNOB | FREEVERT | PROPNEWLOOK;
SideGadInfo.HorizPot = 0;

SideGadInfo.VertPot = 0;

SideGadInfo.HorizBody = -1;

SideGadInfo.VertBody = -1;

/* NOTE the TopEdge adjustment for the border and the font for V36.

*/

SideGad.LeftEdge = -14;

SideGad.TopEdge = myscreen->WBorTop + myscreen->Font->ta YSize + 2;
SideGad.Width = 12;

SideGad.Height = -SideGad.TopEdge - 11;

SideGad.Flags = GFLG_RELRIGHT | GFLG_RELHEIGHT;
SideGad.Activation = GACT_RELVERIFY | GACT_IMMEDIATE | GACT_RIGHTBORDER;
SideGad.GadgetType = GTYP_PROPGADGET | GTYP_GZZGADGET;
SideGad.GadgetRender = (APTR)& (SideGadImage);
SideGad.SpecialInfo = (APTR)&(SideGadInfo);
SideGad.GadgetID = UP_DOWN_GADGET;
SideGad.NextGadget = & (BotGad);

}

/*

** This function does all the work of drawing the lines
*/

VOID doDrawStuff ()

(

WORD x1,y1l,x2,y2;

WORD pen, ncolors,deltx,delty;

ncolors = 1 << Win->WScreen->BitMap.Depth;
deltx = RangeRand (6)+2;
delty = RangeRand (6)+2;

pen = RangeRand(ncolors-1) + 1;
SetAPen (Win->RPort, pen) ;
for (x1=0, yl1=0, x2=WIDTH SUPER-1, y2=HEIGHT SUPER-1;
x1 < WIDTH SUPER; -
x1 += deltx, x2 -= deltx)
{
Move (Win->RPort,x1,yl);
Draw (Win->RPort, x2,y2);
}

pen = RangeRand (ncolors-1) + 1;

SetAPen (Win->RPort, pen);
for (x1=0, y1=0, x2=WIDTH_SUPER-1, y2=HEIGHT_SUPER-1;

102 Amiga ROM Kernel Reference Manual: Libraries

yl < HEIGHT SUPER;
vyl += delty, y2 -= delty)
{
Move (Win->RPort,x1,yl};
Draw (Win->RPort,x2,y2);
}
}

/*

** This function provides a simple interface to Scrolllayer
*/

VOID slideBitMap (WORD Dx,WORD Dy)

{

ScrollLayer (0,Win->RPort->Layer,Dx,Dy);

}

/i

** Update the prop gadgets and bitmap positioning when the size changes.
*/

VOID doNewSize ()

{

ULONG tmp;

tmp = LAYERXOFFSET(Win) + Win->GZZWidth;
if (tmp >= WIDTH_SUPER)
slideBitMap (WIDTH_ SUPER-tmp,0);

NewModifyProp (& (BotGad) ,Win,NULL, AUTOKNOB | FREEHORIZ,
((LAYERXOFFSET (Win) * MAXPROPVAL) /
(WIDTH SUPER - Win->GZZWidth)),
NULL,
((Win->Gz2ZWidth * MAXPROPVAL) / WIDTH_SUPER),
MAXPROPVAL,
1)

tmp = LAYERYOFFSET (Win) + Win->GZZHeight;
if (tmp >= HEIGHT_ SUPER)
slideBitMap (0, HEIGHT SUPER-tmp) ;

NewModifyProp (& (SideGad),Win, NULL,AUTOKNOB | FREEVERT,
NULL,
((LAYERYOFFSET (Win) * MAXPROPVAL) /
(HEIGHT SUPER - Win->GZZHeight)),
MAXPROPVAL,
({(Win->GZzZHeight * MAXPROPVAL) / HEIGHT SUPER),
1);
}

/*

** Process the currently selected gadget.

** This is called from IDCMP_INTUITICKS and when the gadget is released
** IDCMP_GADGETUP.

*/

VOID checkGadget (UWORD gadgetID)

{

ULONG tmp;

WORD dX = 0;

WORD dY = 0;

switch (gadgetID)
{
case UP_DOWN_GADGET:
tmp = HEIGHT_ SUPER - Win->GZZHeight;
tmp = tmp * SideGadInfo.VertPot;
tmp = tmp / MAXPROPVAL;
dY = tmp - LAYERYOFFSET (Win);
break;
case LEFT_RIGHT_GADGET:
tmp = WIDTH_SUPER - Win->GZZWidth;
tmp = tmp * BotGadInfo.HorizPot;
tmp = tmp / MAXPROPVAL;
dX = tmp - LAYERXOFFSET (Win});
break;
}
if (dX [| dY)
slideBitMap (dX,dY);

Intuition Windows 103

}

/t

** Main message loop for the window.
*/

VOID doMsgLoop ()

{

struct IntuiMessage *msg;

WORD flag = TRUE;

UWORD currentGadget = NO_GADGET;

while (flag)
{
/* Whenever you want to wait on just one message port */
/* you can use WaltPort (). WaitPort () doesn’t require */
/* the setting of a signal bit. The only argument it */
/* requires 1s the pointer to the window’s UserPort *x/
WaitPort (Win->UserPort);
while (msg = (struct IntuiMessage *)GetMsg(Win->UserPort))
{
switch (msg->Class)
{
case IDCMP_CLOSEWINDOW:
flag = FALSE;
break;
case IDCMP_NEWSIZE:
doNewSize () ;
doDrawStuff () ;
break;
case IDCMP_GADGETDOWN:
currentGadget = GADGETID (msgq);
break;
case IDCMP_GADGETUP:
checkGadget (currentGadget);
currentGadget = NO_GADGET;
break;
case IDCMP_INTUITICKS:
checkGadget (currentGadget) ;
break;
}
ReplyMsg{ (struct Message *)msg);
}

The Window Structure

The Window structure is the main Intuition data structure used to represent a window. For the most part,
applications treat this structure only as a handle. Window operations are performed by calling system
functions that take Window as an argument instead of directly manipulating fields within the structure.
However, there are some useful variables in a Window structure which are discussed in this section.

struct Window
{
struct Window *NextWindow;
WORD LeftEdge, TopEdge, Width, Height;
WORD MouseY, MouseX;
WORD MinWidth, MinHeight;
UWORD MaxWidth, MaxHeight;
ULONG Flags;
struct Menu *MenuStrip;
UBYTE *Title;
struct Requester *FirstRequest, *DMRequest;
WORD ReqgCount;
struct Screen *WScreen;
struct RastPort *RPort;
BYTE BorderLeft, BorderTop, BorderRight, BorderBottom;
struct RastPort *BorderRPort;
struct Gadget *FirstGadget;
struct Window *Parent, *Descendant;

104 Amiga ROM Kernel Reference Manual: Libraries

UWORD *Pointer;

BYTE PtrHeight, PtrWidth;

BYTE XOffset, YOffset;

ULONG IDCMPFlags;

struct MsgPort *UserPort, *WindowPort;
struct IntuiMessage *MessageKey;

UBYTE DetailPen, BlockPen;

struct Image *CheckMark;

UBYTE *ScreenTitle;

WORD GZZMouseX, GZZMouseY, GZZWidth, GZZHeight;
UBYTE *ExtData;

BYTE *UserData;

struct Layer *WLayer;

struct TextFont *IFont;

ULONG MoreFlags;

b

LeftEdge, TopEdge, Width and Height
These variables reflect current position and size of the window. If the user sizes or positions the
window, then these values will change. The position of the window is relative to the apper left corner
of the screen.

MouseX, MouseY, GZZMouseX, GZZMouseY
The current position of the Intuition pointer with respect to the window, whether or not this window is
currently the active one. For GimmeZeroZero windows, the GZZ variables reflect the position relative
to the inner layer (see ‘“Window Types’” below). For normal windows, the GZZ variables reflect the
position relative to the window origin after taking the borders into account.

ReqCount
Contains a count of the number of requesters currently displayed in the window. Do not rely on the
value in this field, instead use IDCMP_REQSET and IDCMP_REQCLEAR to indirectly determine
the number of open requesters in the window.

WScreen
A pointer to the Screen structure of the screen on which this window was opened.

RPort
A pointer to this window’s RastPort structure. Use this RastPort pointer to render into your window
with Intuition or graphics library rendering functions.

BorderLeft, BorderTop, BorderRight, BorderBottom
These variables describe the actual size of the window borders. The border size is not changed after
the window is opened.

BorderRPort
With GimmeZeroZero windows, this variable points to the RastPort for the outer layer, in which the
border gadgets are kept.

UserData
This pointer is available for application use. The program can attach a data block to this window by
setting this variable to point to the data.

For a commented listing of the Window structure see <intuition/intuition.h> in the Amiga ROM Kernel
Reference Manual: Includes and Autodocs.

Intuition Windows 105

Window Attributes

This section discusses all window attributes. As mentioned earlier, a window’s attributes may be specified
with either TagItems, NewWindow or ExtNewWindow depending on how the window is opened.

Attributes are listed here by their Tagltem ID name (Tagltem.ti_Tag). For each tag item, the equivalent
field setting in the NewWindow structure is also listed if it exists. Some window attributes specified with
tags are available only in Release 2 and have no NewWindow equivalent.

EXTENDED NEW WINDOW

Of the three functions for opening a window, only OpenWindow() is present in all versions of the OS.
This function takes a NewWindow structure as its sole argument. In order to allow applications to use the
OpenWindow() call with Release 2 TaglItem attributes, an extended version of the NewWindow structure
has been created named ExtNewWindow.

Setting WFLG_NW_EXTENDED in the NewWindow.Flags field specifies to the OpenWindow() call
that this NewWindow structure is really an ExtNewWindow structure. This is simply a standard
NewWindow structure with a pointer to a tag list at the end. Since WFLG_NW_EXTENDED is ignored
prior to V36, information provided in the tag list will be ignored by earlier versions of Intuition. Note that
WFLG_NW_EXTENDED may not be specified in the WA_Flags tag.

WINDOW ATTRIBUTE TAGS

WA _Left, WA _Top, WA_Width and WA _Height
Describe where the window will first appear on the screen and how large it will be initially. These
dimensions are relative to the top left corner of the screen, which has the coordinates (0,0).

WA _Left is the initial x position, or offset, from the left edge of the screen. The leftmost pixel is pixel
0, and values increase to the right. Equivalent to NewWindow.LeftEdge.

WA _Top is the initial y position, or offset, from the top edge of the screen. The topmost pixel is pixel
0, and values increase to the bottom. Equivalent to NewWindow.TopEdge.

WA_Width is the initial window width in pixels. Equivalent to NewWindow.Width.
WA_Height is the initial window height in lines. Equivalent to NewWindow.Height.

WA _DetailPen and WA_BlockPen
WA_DetailPen specifies the pen number for the rendering of window details like gadgets or text in the
title bar. WA_BlockPen specifies the pen number for window block fills, like the title bar. These pens
arec also used for rendering menus. Equivalent to NewWindow.DetailPen and
NewWindow.BlockPen.

The specific color associated with each pen number depends on the screen. Specifying -1 for these
values sets the window’s detail and block pen the same as the screen’s detail and block pen.

Detail pen and block pen have largely been replaced starting with V36 by the pen array in the

Drawlnfo structure. See the section on ‘‘Drawlnfo and the 3D Look’’ in the ‘‘Intuition Screens’’
chapter for more information.

106 Amiga ROM Kernel Reference Manual: Libraries

WA _IDCMP
IDCMP flags tell Intuition what user input events the application wants to be notified about. The
IDCMP flags are listed and described in the OpenWindowTagList() description in the Amiga ROM
Kernel Reference Manual: Includes and Autodocs and in the chapter ‘‘Intuition Input and Output
Methods’’ in this book. Equivalent to NewWindow.IDCMPFlags.

If any of these flags are set, Intuition creates a pair of message ports for the window (one internal to
Intuition and one used by the application). These ports are for handling messages about user input
events. If WA_IDCMP is NULL or unspecified, no IDCMP is created for this window.

The ModifyIDCMP() function can be used to change the window’s IDCMP flags after it is open.

WA_Gadgets
A pointer to the first in the linked list of Gadget structures that are to be included in this window.
These gadgets are application gadgets, not system gadgets. See the ‘‘Intuition Gadgets’ chapter for
more information. Equivalent to NewWindow.FirstGadget.

WA _Checkmark
A pointer to an Image structure, which is to be used as the checkmark image in this window’s menus.
To use the default checkmark, do not specify this tag or set this field to NULL. Equivalent to
NewWindow.CheckMark.

WA _Title
A pointer to a NULL terminated text string, which is used as the window title and is displayed in the
window’s title bar.

Intuition draws the text using the colors defined in the DrawInfo pen array (DrawInfo.dri_Pens) and
displays as much as possible of the window title, depending upon the current width of the title bar.
Equivalent to NewWindow.Title. See the section on ‘‘Drawlnfo and the 3D Look’’ in the ‘‘Intuition
Screens’’ chapter for more information on the pen array.

The title is rendered in the screen’s default font.

A title bar is added to the window if any of the properties WA_DragBar (WFLG_WINDOWDRAG),
WA_DepthGadget (WFLG_WINDOWDEPTH), WA_CloseGadget (WFLG_WINDOWCLOSE) or
WA_Zoom are specified, or if text is specified for a window title. If no text is provided for the title,
but one or more of these system gadgets are specified, the title bar will be blank. Equivalent to
NewWindow.Title.

WA_ScreenTitle
A pointer to a NULL terminated text string, which is used as the screen title and is displayed, when the
window is active, in the screen’s title bar. After the screen has been opened the screen’s title may be
changed by calling SetWindowTitles() (which is the only method of setting the window’s screen title
prior to V36).

WA_CustomScreen
A pointer to the Screen structure of a screen created by this application. The window will be opened
on this screen. The custom screen must already be opened when the OpenWindowTagList() call is
made. Equivalent to NewWindow.Screen, also impliecs NewWindow.Type of CUSTOMSCREEN.

Intuition Windows 107

WA MinWidth, WA MinHeight, WA_MaxWidth and WA_MaxHeight
“These tags set the minimum and maximum values to which the user may size the window. If the flag
WFLG_WINDOWSIZING is not set, then these variables are ignored. Values are measured in pixels.
Use (0) for the WA_MaxWidth (WA_MaxHeight) to allow for a window as wide (tall) as the screen.
This is the complete screen, not the visible part or display clip.

Setting any of these variables to 0, will take the setting for that dimension from its initial value. For
example, setting MinWidth to 0, will make the minimum width of this window equal to the initial
width of the window.

Equivalent to NewWindow.MinWidth, NewWindow.MinHeight, NewWindow.MaxWidth and
NewWindow.MaxHeight. Use the WindowLimits() function to change window size limits after the
window is opened.

WA_InnerWidth and WA_InnerHeight
Specify the dimensions of the interior region of the window, i.e., inside the border, independent of the
border widths. When using WA_InnerWidth and WA_InnerHeight an application will probably want
to set WA_AutoAdjust (see below).

WA PubScreen
Open the window as a visitor window on the public screen whose address is in the ti_Data field of the
WA_PubScreen Tagltem. To ensure that this screen remains open until OpenWindowTagList() has
completed, the application must either be the screen’s owner, have a window open on the screen, or
use LockPubScreen(). Setting this tag implies screen type of PUBLICSCREEN.

WA_PubScreenName
Declares that the window is to be opened as a visitor on the public screen whose name is pointed to by
the ti_Data field of the WA_PubScreenName TagItem. The OpenWindowTagList() call will fail if
it cannot obtain a lock on the named public screen and no fall back name (WA_PubScreenFallBack) is
specified. Setting this tag implies screen type of PUBLICSCREEN.

WA_PubScreenFallBack
A Boolean, specifies whether a visitor window should "fall back" to the default public screen (or
Workbench) if the named public screen isn’t available This tag is only meaningful when used in
conjunction with WA_PubScreenName.

WA Zoom
Pointer to an array of four WORDs, the initial LeftEdge, TopEdge, Width and Height values for the
alternate zoom position and size. It also specifies that the application wants a zoom gadget for the
window, whether or not it has a sizing gadget.

A zoom gadget is always supplied to a window if it has both depth and sizing gadgets. This tag allows
the application to open a window with a zoom gadget when the window does not have both the depth
and sizing gadgets.

WA _MouseQueue
An initial value for the mouse message backlog limit for this window. The SetMouseQueue()
function will change this limit after the window is opened.

WA_RptQueue
An initial value of repeat key backlog limit for this window.

108 Amiga ROM Kernel Reference Manual: Libraries

BOOLEAN WINDOW ATTRIBUTE TAGS

These boolean window tags are alternatives to the NewWindow.Flags bit fields with similar names.
Unlike the tags discussed above, the ti_Data field of these TagItems is set to either TRUE or FALSE.

WA_SizeGadget

Specifying this flag tells Intuition to add a sizing gadget to the window. Intuition places the sizing
gadget in the lower right comer of the window. By default, the right border is adjusted to
accommodate the sizing gadget, but the application can specify one of the following two flags to
change this behavior. The WFLG_SIZEBRIGHT flag puts the sizing gadget in the right border. The
WFLG_SIZEBBOTTOM flag puts the sizing gadget in the bottom border. Both flags may be
specified, placing the gadget in both borders. Equivalent to NewWindow.Flags
WFLG_SIZEGADGET.

WA _SizeBRight
Place the size gadget in the right border. Equivalent to NewWindow.Flags WFLG_SIZEBRIGHT.

WA _ SizeBBottom
Place the size gadget in the bottom border. Equivalent to NewWindow.Flags
WFLG_SIZEBBOTTOM.

WA DragBar
This flag turns the entire title bar of thc window into a drag gadget, allowing the user to position the
window by clicking in the title bar and dragging the mouse. Equivalent to NewWindow.Flags
WFLG_DRAGBAR.

WA _ DepthGadget
Setting this flag adds a depth gadget to the window. This allows the user to change the window’s
depth arrangement with respect to other windows on the screen. Intuition places the depth gadget in
the upper right corner of the window. Equivalent to NewWindow.Flags WFLLG_DEPTHGADGET.

WA _CloseGadget
Setting this flag attaches a close gadget to the window. When the user selects this gadget, Intuition
transmits a message to the application. It is up to the application to close the window with a
CloseWindow() call. Intuition places the close gadget in the upper left corner of the window.
Equivalent to NewWindow.Flags WFLG_CLOSEGADGET.

WA _ReportMouse
Send mouse movement events to the window as x,y coordinates. Also see the description of the
IDCMP flag IDCMP_MOUSEMOVE, in the chapter ‘“‘Intuition Input and Output Methods.”
Equivalent to NewWindow.Flags WFLG_REPORTMOUSE.

The WFLG_REPORTMOUSE flag in the Flags field of the Window structure may be modified on the
fly by the program. Changing this flag must be done as an atomic operation. Most compilers
generate atomic code for operations such as window->flags |= WFLG_REPORTMOUSE OF window-
>flags &= ~WFLG_REPORTMOUSE. If you arc unsure of getting an atomic operation from your compiler,
you may wish to do this operation in assembler, or bracket the code with a Forbid()/Permit() pair.

The use of the ReportMouse() function is strongly discouraged, due to historic confusion over the
parameter ordering.

Intuition Windows 109

WA_NoCareRefresh
This window does not want IDCMP_REFRESHWINDOW cvents. Set this flag to prevent the
window from receiving refresh window messages. Equivalent to NewWindow.Flags
WFLG_NOCAREREFRESH. Intuition will manage BeginRefresh() and EndRefresh() internally.

WA_Borderless
Open a window with no borders rendercd by Intuition. Equivalent to NewWindow.Flags
WFLG_BORDERLESS.

Use caution setting this flag, as it may cause visual confusion on the screen. Also, some borders may
be rendered if any of the system gadgets are requested, if text is supplied for the window’s title bar, or
if any of application gadgets are in the borders.

WA_Backdrop
Make this window a Backdrop window. Equivalent to NewWindow.Flags WFLG_BACKDROP.

WA _GimmeZeroZero
Set this tag to create a GimmeZeroZero window. GimmeZeroZero windows have the window border
and border gadgets rendered into an extra layer. This extra layer slows down window operations, thus
it is recommended that applications only use GimmeZeroZero windows when they are required. For
clipping graphics to the area within the borders of a window, see the discussion of ‘‘Regions’” in the
‘‘Layers Library’’ chapter. Equivalent to NewWindow.Flags WFLG_GIMMEZEROZERO.

WA_Activate
Activate the window when it opens. Equivalent to NewWindow.Flags WFLG_ACTIVATE. Use this
flag carefully, as it can change where the user’s input is going.

WA _RMBTrap
Catch right mouse button events for application use. Set this flag to disable menu operations for the
window. When set, right mouse button events will be received as IDCMP_MOUSEBUTTONS with
the MENUUP and MENUDOWN qualifiers. Equivalent to NewWindow.Flags WFLG_RMBTRAP.

The WFLG_RMBTRAP flag in the Window structure Flags ficld may be modified on the fly by the
program. Changing this flag must be donc as an atomic operation, as Intuition can preempt a multistep
set or clear operation. An atomic operation can be done in assembler, using 68000 instructions that
operate directly on memory. If you arc unsure of generating such an instruction, place the operation
within a Forbid()/Permit() pair. This will ensure proper operation by disabling multitasking while
the flag is being changed.

WA_SimpleRefresh
The application program takes complete responsibility for updating the window. Only specify if
TRUE. Equivalent to NewWindow.Flags WFLG_SIMPLE_REFRESH.

WA _SmartRefresh
Intuition handles all window updating, except for parts of the window revealed when the window is
sized larger. Only specify if TRUE. Equivalent to NewWindow.Flags WFLG_SMART_REFRESH.

WA_SmartRefresh windows without a sizing gadget will never receive refresh events due to the user
sizing the window. However, if the application sizes the window through a call like
ChangeWindowBox(), ZipWindow() or SizeWindow(), a rcfresh event may be generated. Use
WA_NoCarcRefresh to disable refresh events.

110 Amiga ROM Kernel Reference Manual: Libraries

WA_SuperBitMap
This is a pointer to a BitMap structure for a SuperBitMap window. The application will be allocating
and maintaining its own bitmap. Equivalent to NewWindow.BitMap. Setting this tag implies the
WFLG_SUPER_BITMAP property.

For complete information about SuperBitMap, see ‘‘Setting Up a SuperBitMap Window’’ in this
chapter.

WA_AutoAdjust
Allow Intuition to change the window’s position and dimensions in order to fit it on screen. The
window’s position is adjusted first, then the size. This property may be especially important when
using WA_InnerWidth and WA_InnerHeight as border size depends on a uscr specified font.

WA_MenuHelp (new for V37, ignored by V36)
Enables IDCMP_MENUHELP: pressing Help during menus will return IDCMP_MENUHELP
message. See the ‘‘Intuition Menus’’ chapter for more information.

WA_Flags
Multiple initialization of window flags, equivalent to NewWindow.Flags. Use thc WFLG_ constants
to initialize this field, multiple bits may be set by ORing the values together.

WA_BackFill
Allows you to specify a backfill hook for your window’s layer. Sce the description of
CreateUpFrontHookLayer() in the ‘‘Layers Library’’ chapter. Note that this tag is implemented in
V37, contrary to what some versions of the include files may say.

Other Window Functions

This section contains a brief overview of other Intuition functions that affect windows. For a complete
description of all Intuition functions, see the Amiga ROM Kernel Reference Manual: Includes and
Autodocs.

MENUS AND THE ACTIVE WINDOW

Menus for the active window will be displayed when the user presses the menu button on the mouse.
Menus may be disabled for the window by not providing a menu strip, or by clearing the menus with
ClearMenuStrip(). Similarly, if the active window has WFLG_RMBTRAP sct, the menu button will not
bring up the menus.

Two other functions, SetMenuStrip() and ResetMenuStrip(), are used to attach or update the menu strip
for a window.

void ClearMenuStrip(struct Window *window);
BOOL SetMenuStrip(struct Window *window, struct Menu *menu);
BOOL ResetMenuStrip(struct Window *window, struct Menu *menu);

If SetMenuStrip() has been called for a window, ClearMenuStrip() must be called before closing the
window. After ClearMenuStrip() has been called, the user can no longer access menus for this window.
See the chapter ‘‘Intuition Menus,”’ for complete information about setting up menus.

Intuition Windows 111

REQUESTERS IN THE WINDOW

Requesters are temporary sub-windows, usually containing several gadgets, used to confirm actions, access
files, or adjust the options of a command the user has just given. Request() creates and activates a
requester in the window. EndRequest() removes the requester from the window.

BOOL Request (struct Requester *requester, struct Window *window);
void EndRequest (struct Requester *requester, struct Window *window };

For simple requesters in a format that matches system requesters, two new functions have been added to
Release 2:

LONG EasyRequestArgs(struct Window *window, struct EasyStruct *easyStruct,
ULONG *idcmpPtr, APTR args);

LONG EasyRequest (struct Window *window, struct EasyStruct *easyStruct,
ULONG *idcmpPtr, APTR argl, ...);

The EasyRequest() functions support requesters with one or more gadgets automatically providing a layout
that is sensitive to the current font and screen resolution. See the chapter ‘‘Intuition Requesters and Alerts’’
for more information on using requester functions.

PROGRAM CONTROL OF WINDOW ARRANGEMENT

MoveWindow(), SizeWindow(), WindowToFront() and WindowToBack() allow the program to modify
the size and placement of its windows. These calls are available in all versions of the operating system.

MoveWindowInFrontOf(), ChangeWindowBox() and ZipWindow() have been added in Release 2 to
provide more flexible control over the size and placement of windows.

All of these functions are asynchronous. The window will not be affected by them immediately, rather,
Inwition will act on the request the next time it receives an input event. Currently this happens at a
minimum rate of ten times per second, and a maximum of sixty times per second. There is no guarantee
that the operation has taken place when the function returns. In some cases, there are IDCMP messages
which will inform the application when the change has completed (for example, an IDCMP_NEWSIZE
event indicates that a resize operation has completed).

Use the MoveWindow() function to move a window to a new position in the screen. Use SizeWindow() to
change the size of the window:

void MoveWindow(struct Window *window, long dx, long dy);
void SizeWindow(struct Window *window, long dx, long dy);

Note that both MoveWindow() and SizeWIndow() take the amount of change in each axis (delta values
instead of absolute coordinates). To specify the coordinates as absolute numbers, use
ChangeWindowBox(). The SizeWindow() function will respect the window’s maximum and minimum
dimensions only if the window has a sizing gadget.

A new function in Release 2, ChangeWindowBox(), allows an application to change the window size and
position in a single call:

void ChangeWindowBox(struct Window *window, long left, long top, long width, long height);

Note that the position and size values are absolutes and not deltas. The window’s maximum and minimum
dimensions are always respected.

112 Amiga ROM Kernel Reference Manual: Libraries

To depth arrange windows under program control, use WindowToFront() and WindowToBack():

void WindowToFront (struct Window *window);
void WindowToBack (struct Window *window);

WindowToFront() depth arranges a given window in front of all other windows on its screen.
WindowToBack() depth arranges a given window behind all other windows on its screen.

To move a window in front of a specific, given window (as opposed to all windows), use
MoveWindowInFrontOf():

void MoveWindowInFrontOf(struct Window *window, struct Window *behindWindow);

MoveWindowInFrontOf() is a new call provided in Release 2 and is not available in older versions of the
OS.

To toggle the window size between its two zoom settings use ZipWindow(). This performs the same
action that occurs when the user selects the zoom gadget:

void ZipWindow(struct Window *window);

The two zoom settings are the initial size and position of the window when it was first opened and the
alternate position specified with the WA_Zoom tag. If no WA_Zoom tag is provided, the alternate position
is taken from the window’s minimum dimensions, unless the window was opened at its minimum
dimension. In that case, the alternate position is taken from the window’s maximum dimension.
ZipWindow() is a new call provided in Release 2 and is not available in older versions of the OS.

CHANGING THE WINDOW OR SCREEN TITLE

Each window has its own window title and local screen title. The window title, if specified, is always
displayed in the window. The local screen title, if specified, is only displayed in the screen’s title bar when
the window is active. If the window does not specify a local screen title, then the default screen title is used
in the screen title bar when this window is active.

void SetWindowTitles(struct Window *window, UBYTE *windowTitle, UBYTE *screenTitle);

This function changes the window title or local screen title for the given window. Both windowTitle and
screenTitle can be set to -1, NULL or a NULL terminated string. Specifying -1 will not change the title
from the current value. Specifying NULL will clear the window title or reset the screen title to the default
title for the screen.

CHANGING MESSAGE QUEUE LIMITS

Starting with V36, windows have limits on the number of mouse movement and repeat key messages that
may be waiting at their IDCMP at any time. These queue limits prevent the accumulation of these
messages, which may arrive at the IDCMP message port in large numbers.

Once a queue limit is reached, further messages of that type will be discarded by Intuition. The application
will never hear about the discarded messages; they are gone forever. (Note that only mouse move and key
repeat messages are limited this way. Other types of messages will still be added to the port.) Messages of
the limited type will arrive at the port again after the application has replied to one of the messages in the
queue.

Intuition Windows 113

The queue limits are independent of each other. Having reached the limit for one type of message does not
prevent other types of messages (that have not yet reached their queuing limits) from being added to the
IDCMP. Note that the queues apply only to the IDCMP and not to messages received directly via an input
handler or from the console device.

Order of event arrival is not a factor in the message count. Messages may be sequential or interspersed
with other events--only the number of messages of the specific type waiting at the IDCMP matters.

The WA_RptQueue tag allows setting an initial value for the repeat key backlog limit for the window.
There is no function to change this value as of V37. The default value for WA_RptQueue is 3.

The WA_MouseQueue tag allows setting an initial value for the mouse message backlog limit for the
window. The default value for WA_MouseQueue is 5. The number may later be changed with a call to
SetMouseQueue():

LONG SetMouseQueue(struct Window *window, unsigned long queuelLength);

Note that real information may be lost if the queue fills and Intuition is forced to discard messages. See the
chapter ‘‘Intuition Mouse and Keyboard’’ for more information.

CHANGING POINTER POSITION REPORTS

Pointer position messages to a window may be turned on and off by simply setting or clearing the
WFLG_REPORTMOUSE flag bit in Window->Flags, in an atomic way, as explained for the
WA_RMBTrap tag in the ‘*“Window Attributes’’ section above. Using this direct method of setting the flag
avoids the historic confusion on the ordering of the arguments of the ReportMouse() function call.

Mouse reporting may be turned on even if mouse movements were not activated when the window was
opened. The proper IDCMP flags must be set for the window to receive the messages. See the chapter
“‘Intuition Mouse and Keyboard’’ for more details on enabling mouse reporting in an application.

CUSTOM POINTERS

The active window also has control over the pointer. If the active window changes the image for the
pointer using the functions SetPointer() or ClearPointer(), the pointer image will change:

vold SetPointer(struct Window *window, UWORD *pointer, long height,
long width, long xOffset, long yOffset);

void ClearPointer(struct Window *window);

SetPointer() scts up the window with a sprite definition for a custom pointer. If the window is active, the
change takes place immediately. The pointer will not change if an inactive window calls SetPointer(). In
this way, each window may have its own custom pointer that is displayed only when the window is active.

ClearPointer() clears the custom pointer from the window and restores it to the default Intuition pointer,

which is set by the user. Setting a pointer for a window is discussed further in the chapter *‘Intuition
Mouse and Keyboard’’.

114 Amiga ROM Kernel Reference Manual: Libraries

Function Reference

The following are brief descriptions of the Intuition functions that relate to the use of Intuition windows.

See the Amiga ROM Kernel Reference Manual: Includes and Autodocs for details on each function call.

Table 4-2: Functions for Intuition Windows

Function Description
OpenWindowTagList() Open a window.
OpenWindowTags() Alternate calling sequence for OpenWindowTagList().
OpenWindow() Pre-V36 way to open a window.
CloseWindow() Close a window.
BeginRefresh() Turn on optimized window refresh mode.
EndRefresh() Turn off optimized window refresh mode.
RefreshWindowFrame() Redraw the borders and border gadgets of an open window.
ActivateWindow() Make an open window active.
SizeWindow() Change the size of an open window.
MoveWindow() Change the position of an open window.
ChangeWindowBox() Change the size and position of an open window.
WindowLimits() Change the minimum and maximum sizes of an open window.
WindowToBack() Move a window behind all other windows.
WindowToFront() Move a window in front of all other windows.
MoveWindowInFrontOf() Move a window in front of another window.
ZipWindow() Change the size of window to its alternate size.
SetWindowTitles() Change the window titles for the window and the screen.
SetPointer() Set up a custom pointer to display whenever the window is active.
ClearPointer() Restore the mouse pointer to its default imagery.

Intuition Windows 115

Chapter 5
INTUITION GADGETS

This chapter describes the multi-purpose software controls called gadgets. Gadgets are software controls
symbolized by an image that the user can operate with the mouse or keyboard. They are the Amiga’s
equivalent of buttons, knobs and dials.

Much of the user’s input to an application takes place through gadgets in the application’s windows and
requesters. Gadgets are also used by Intuition itself for handling screen and window movement and depth
arrangement, as well as window sizing and closing.

Intuition maintains gadget imagery, watches for activation and deactivation and performs other
management required by the gadget. The application can choose its level of involvement from simply
receiving gadget activation messages to processing the actual mouse button presses and movements. To
make gadget programming even easier, Release 2 of the Amiga operating system includes the new
GadTools library. Applications written for Release 2 should take advantage of this new library (described
separately in the ‘‘GadTools Library’’ chapter).

About Gadgets

There are two kinds of gadgets: system gadgets and application gadgets. System gadgets are set up by
Intuition to handle the positioning and depth arranging of screens, and to handle the positioning, sizing,
closing and depth arranging of windows. System gadgets always use the same imagery and location giving
the windows and screens of any application a basic set of controls that are familiar and easy to operate. In
general, applications do not have to do any processing for system gadgets; Intuition does all the work.

Application gadgets are set up by an application program. These may be the basic gadget types described
in this chapter, the pre-fabricated gadgets supplied by the GadTools library, or special gadget types defined
through Intuition’s custom gadget and BOOPSI facilities. Application gadgets can be placed anywhere
within a window and can use just about any image. The action associated with an application gadget is
carried out by the application.

Intuition Gadgets 117

There are four basic types of application gadgets:

o Boolean (or button) gadgets elicit true/false or yes/no kinds of answers from the user.

o Proportional gadgets allow the user to select from a continuous range of options, such as volume or
speed.

o String gadgets are used to get or display character based information (a special class of string gadget
allows entry of numeric data.)

o Custom gadgets, a new, generalized form of gadget, provide flexibility to perform any type of
function.

The way a gadget is used varies according to the type of gadget. For a boolean gadget, the user operates the
gadget by simply clicking the mouse select button. For a string gadget, a cursor appears, allowing the user
to enter data from the keyboard. For a proportional gadget, the user can either drag the knob with the
mouse or click in the gadget container to move the knob by a set increment.

Gadgets are chosen by positioning the pointer within an area called the select box, which is application
defined, and pressing the mouse select button (left mouse button).

When a gadget is selected, its imagery is changed to indicate that it is activated. The highlighting method
for the gadget may be set by the application. Highlighting methods include alternate image, alternate
border, a box around the gadget and color complementing.

A gadget can be either enabled or disabled. Disabled gadgets cannot be operated and are indicated by

ghosting the gadget, that is, overlaying its image with a pattern of dots. Gadgets may also be directly
modified and redrawn by first removing the gadget from the system.

Cycle Gadget Drag Bar

String Gadget Zoom Gadget

.‘ Depth Gadget

‘ F3roportional Gadget

Boolean Gadget

Figure 5-1: System and Application Gadgets

118 Amiga ROM Kernel Reference Manual: Libraries

SYSTEM GADGETS

System gadgets are predefined gadgets provided by Intuition to support standard operations of windows and
screens. System gadgets have a standard image and location in the borders of screens or windows.
Intuition manages the operation of all system gadgets except the close gadget.

The drag and depth gadgets are automatically attached to each screen in the system. The application cannot
control the creation of these gadgets, but can control their display and operation. Screens may be opened
“‘quiet’’, without any of the gadget imagery displayed. Applications should avoid covering the screen’s
gadgets with windows as this may prevent the user from freely positioning the screen. See the “‘Intuition
Screens’’ chapter for more information on the positioning and use of system gadgets for screens.

The drag, depth, close, sizing and zoom gadgets are available to be attached to each window. These
gadgets are not provided automatically, the application must specify which gadgets it requires. See the
““Intuition Windows’’ chapter for more information on the positioning and use of system gadgets for
windows.

APPLICATION GADGETS

Application gadgets imitate real life controls: they are the switches, knobs, handles and buttons of the
Intuition environment. Gadgets can be created with almost any imaginable type of imagery and function.
Visual imagery for gadgets can combine text with hand drawn imagery or lines of multiple colors.

A gadget is created by declaring and initializing a Gadget structure as defined in <intuition/intuition.h>.
Sec the “‘Gadget Structure’” section later in this chapter for more details.

Gadgets always appear in a window or requester. All windows and requesters keep a list of the gadgets
they contain. Gadgets can be added when the window or requester is opened, or they can be added or
removed from the window or requester after it is open.

As with other types of input events, Intuition notifies your application about gadget activity by sending a
message to your window’s I/O channels: the IDCMP (Window.UserPort) or the console device. The
message is sent as an Intuition IntuiMessage structure. The Class field of this structure is set to
IDCMP_GADGETDOWN or IDCMP_GADGETUP with the IAddress field set to the address of the
Gadget that was activated. (See the chapter on ‘‘Intuition Input and Output Methods’’ for details.)

Application gadgets can go anywhere in windows or requesters, including in the borders, and can be any
size or shape. When application gadgets are placed into the window’s border at the time the window is
opened, Intuition will adjust the border size accordingly. Application gadgets are not supported in screens
(although this may be simulated by placing the gadget in a backdrop window).

Gadget size can be fixed, or can change relative to the window size. Gadget position can be set relative to
either the top or bottom border, and either the left or right border of the window, allowing the gadget to
move with a border as the window is sized.

This flexibility provides the application designer the freedom to create gadgets that mimic real devices,

such as light switches or joysticks, as well as the freedom to create controls that satisfy the unique needs of
the application.

Intuition Gadgets 119

A Simple Gadget Example

The example below demonstrates a simple application gadget. The program declares a Gadget structure set
up as a boolean gadget with complement mode highlighting. The gadget is attached to the window when it
is opened by using the WA_Gadgets tag in the OpenWindowTags() call.

;/* simplegad.c - Execute me to compile me with SAS C 5.10

LC -bl -cfistq -v -y -J73 simplegad.c

Blink FROM LIB:c.o,simplegad.o TO simplegad LIBRARY LIB:LC.lib,LIB:Amiga.lib
quit

* %

** simplegad.c - show the use of a button gadget.

*/

#define INTUI V36 NAMES ONLY
#include <exec/types.h>
#include <intuition/intuition.h>

#include <intuition/intuitionbase.h>

#include <clib/exec_protos.h>
#include <clib/intuition_protos.h>

#include <stdio.h>

#ifdef LATTICE

int CXBRK(void) { return(0); } /* Disable Lattice CTRL/C handling */
int chkabort (void) { return(0); } /* really */
#endif

struct Library *IntuitionBase;

#define BUTTON_GAD NUM (3)
#define MYBUTTONGADWIDTH (100)
#define MYBUTTONGADHEIGHT (50)

/* NOTE that the use of constant size and positioning values are

** not recommended; it just makes it easy to show what is going on.

** The position of the gadget should be dynamically adjusted depending
** on the height of the font in the title bar of the window.

*/

UWORD buttonBorderData(] =
{
0,0, MYBUTTONGADWIDTH + 1,0, MYBUTTONGADWIDTH + 1,MYBUTTONGADHEIGHT + 1,
0,MYBUTTONGADHEIGHT + 1, 0,0,
}i

struct Border buttonBorder =
{
-1,-1,1,0,JAM1, 5,buttonBorderData,NULL,
}i

struct Gadget buttonGad =
{
NULL, 20,20, MYBUTTONGADWIDTH,MYBUTTONGADHEIGHT,
GFLG_GADGHCOMP, GACT_RELVERIFY | GACT_IMMEDIATE,
GTYP_BOOLGADGET, &buttonBorder, NULL, NULL,0,NULL,BUTTON_GAD NUM,NULL,
)i

/t

** routine to show the use of a button (boolean) gadget.
*/

VOID main(int argc, char **argv)

{

struct Window *win;

struct IntuiMessage *msg;

struct Gadget *gad;

ULONG class;

BOOL done;

/* make sure to get intuition version 37, for OpenWindowTags() */
IntuitionBase = Openlibrary ("intuition.library", 37);

120 Amiga ROM Kernel Reference Manual: Libraries

if (IntuitionBase)
{
if (win = OpenWindowTags (NULL,
WA_Width, 400,
WA_Height, 100,
WA_Gadgets, &buttonGad,
WA _Activate, TRUE,
WA_CloseGadget, TRUE,
WA_IDCMP, IDCMP_GADGETDOWN | IDCMP_GADGETUP
IDCMP_CLOSEWINDOW,
TAG_END))
{
done = FALSE;
while (done == FALSE)
{
Wait (1L << win->UserPort->mp_SigBit);
while ((done == FALSE) &&
(msg = (struct IntuiMessage *)GetMsg(win->UserPort)})
{
/* Stash message contents and reply, important when message
** triggers some lengthy processing
*/
class = msg->Class;

/* gadget address is ONLY valid for gadget messages! */
if ((class == IDCMP_GADGETUP) || (class == IDCMP GADGETDOWN))
gad = (struct Gadget *) (msg->IAddress);

ReplyMsg{ (struct Message *)msg);

/* switch on the type of the event */
switch (class)
{
case IDCMP_GADGETUP:
/* caused by GACT_RELVERIFY */
printf("received an IDCMP_GADGETUP, gadget number %d\n",
gad->GadgetID);
break;
case IDCMP_GADGETDOWN:
/* caused by GACT_IMMEDIATE */
printf ("received an IDCMP_GADGETDOWN, gadget number %d\n*",
gad->GadgetID);
break;
case IDCMP_CLOSEWINDOW:
/* set a flag that we are done processing events... */
printf("received an IDCMP_CLOSEWINDOW\n");
done = TRUE;
break;

}
}

CloseWindow (win) ;

}
Closelibrary (IntuitionBase);

}

ADDING AND REMOVING GADGETS

Gadgets may be added to a window or requester when the window or requester is opened, or they may be
added later. To add the gadgets when a window is opened, use the WA_Gadgets tag with the
OpenWindowTagList() call. This technique is demonstrated in the example above. For a requester, set
the ReqGadget ficld in the Requester structure to point to the first gadget in the list.

To add or remove gadgets in a window or requester that is already open, use AddGList() or
RemoveGList(). These functions operate on gadgets arranged in a list. A gadget list is linked together by
the NextGadget field of the Gadget structure (see the description of the Gadget structure later in this
chapter).

Intuition Gadgets 121

AddGList() adds a gadget list that you specify to the existing gadget list of a window or requester:

UWORD AddGList (struct Window *window, struct Gadget *agadget,
unsigned long position, long numGad, struct Requester *requester);

Up to numGad gadgets will be added from the gadget list you specify beginning with agadget. The
position argument determines where your gadgets will be placed in the existing list of gadgets for the
window or requester. Use ("0) to add your gadget list to the end of the window or requester’s gadget list.
This function returns the actual position where your gadgets are added in the existing list.

To remove gadgets from a window or requester usc RemoveGList():

UWORD RemoveGList (struct Window *remPtr, struct Gadget *agadget, long numGad);

This function removes up to numGad gadgets from a window or requester, beginning with the specified
one. Starting with V37, if one of the gadgets that is being removed is the active gadget, this routine will
wait for the user to release the mouse button before deactivating and removing the gadget. This function
returns the former position of the removed gadget or -1 if the specified gadget was not found.

The Gadget structure should never be directly modified after it has been added to a window or requester.
To modify a gadget, first remove it with RemoveGList(), modify the structure as needed, and then add the
gadget back to the system with AddGList(). Finally, refresh the gadget imagery with RefreshGList().
(See the section on ‘‘Gadget Refreshing’’ below for more information.)

Some attributes of a gadget may be modified through special Intuition functions that perform the
modification. When using such functions it is not necessary to remove, add or refresh the gadget. These
functions, such as NewModifyProp(), OnGadget() and OffGadget(), are described later in this chapter.

Gadget Imagery

Gadget imagery can be rendered with a series of straight lines, a bitmap image or no imagery at all. In
addition to the line or bitmap imagery, gadgets may include a series of text strings.

HAND DRAWN GADGETS

Bitmap or custom images are used as imagery for a gadget by setting the GFLG_GADGIMAGE flag in the
Flags field of the Gadget structure. An Image structure must be set up to manage the bitmap data. The
address of the Image structure is placed into the gadget’s GadgetRender field. The bitmap image will be
positioned relative to the gadget’s select box. For more information about creating Intuition images, see the
chapter ‘‘Intuition Images, Line Drawing, and Text.”” For a listing of the Gadget structure and all its flags
see the ‘“Gadget Structure’’ section later in this chapter.

LINE DRAWN GADGETS

Gadget imagery can also be created by specifying a series of lines to be drawn. These lines can go around
or through the select box of the gadget, and can be drawn using any color pen and draw mode. Multiple
groups of lines may be specified, each with its own pen and draw mode.

122 Amiga ROM Kernel Reference Manual: Libraries

The Border structure is used to describe the lines to be drawn. The Border structure is incorporated into
the gadget by clearing the GFLG_GADGIMAGE flag in the gadget’s Flags field. The address of the
Border structure is placed into the gadget’s GadgetRender field. The border imagery will be positioned
relative to the gadget’s select box. For more information about creating a Border structure, see the chapter
‘‘Intuition Images, Line Drawing, and Text.”’

GADGET TEXT

Gadgets may include text information in the form of a linked list of IntuiText structures. A pointer to the
first IntuiText structure in the list is placed in the Gadget structure’s GadgetText ficld. The text is
positioned relative to the top left corner of the gadget’s select box. For more information on IntuiText, see
the “‘Intuition Images, Line Drawing and Text’’ chapter.

GADGETS WITHOUT IMAGERY

Gadgets can be created without any defining imagery. This type of gadget may be used where mouse
information is required but graphical definition of the gadget is not, or where the existing graphics
sufficiently define the gadget that no additional imagery is required. A gadget with no imagery may be
created by clearing the GFLG_GADGIMAGE flag in the gadget’s Flags field, and by setting the gadget’s
GadgetRender and GadgetText ficlds to NULL.

The text display of a word processor is a case where mouse information is required without any additional
graphics. If a large gadget is placed over the text display, gadget and mouse event messages may be
received at the IDCMP (Window.UserPort) when the mouse select button is either pressed or released.
The mouse information is used to position the pointer in the text, or to allow the user to mark blocks of text.
The drag bar of a window is another example of a gadget where existing imagery defines the gadget such
that additional graphics are not required.

Gadget Selection

The user operates a gadget by pressing the select button while the mouse pointer is within the gadget’s
select box. Intuition provides two ways of notifying your program about the user operating a gadget. If
your application necds immediate notification when the gadget is chosen, set the GACT_IMMEDIATE flag
in the gadget’s Activation field. Intuition will send an IDCMP_GADGETDOWN message to the
window’s UserPort when it detects the mouse select button being pressed on the gadget.

If the application needs notification when the gadget is released, i.e., when the user releases the mouse
select button, set the GACT_RELVERIFY (for ‘‘release verify’’) flag in the gadget’s Activation ficld. For
boolean gadgets, Intuition will send an IDCMP_GADGETUP message to the window’s UserPort when the
mouse select button is released over a GACT_RELVERIFY gadget. The program will only receive the
IDCMP_GADGETUP message if the user still has the pointer positioned over the select box of the gadget
when the mouse select button is released.

If the user moves the mouse out of the gadget’s sclect box before releasing the mouse button an
IDCMP_MOUSEBUTTONS event will be sent with a code of SELECTUP. This indicates the user’s
desire to not proceed with the action. Boolean gadgets that are GACT_RELVERIFY allow the user a
chance to cancel a selection by rolling the mouse off of the gadget before releasing the select button.

Intuition Gadgets 123

String gadgets have a slightly different behavior, in that they remain active after the mouse button has been
released. The gadget remains active until Return or Enter is pressed, the user tabs to the next or previous
gadget, another window becomes active or the user chooses another object with the mouse. An
IDCMP_GADGETUP message is only sent for GACT_RELVERIFY string gadgets if the user ends the
gadget interaction through the Return, Enter or (if activated) one of the tab keys.

GACT_RELVERIFY proportional gadgets send IDCMP_GADGETUP events even if the mouse button is
released when the pointer is not positioned over the select box of the gadget.

Gadgets can specify both the GACT_IMMEDIATE and GACT_RELVERIFY activation types, in which
case, the program will receive both IDCMP_GADGETDOWN and IDCMP_GADGETUP messages.

Gadget Size and Position

The position and dimensions of the gadget’s select box are defined in the Gadget structure. The LeftEdge,
TopEdge, Width and Height values can be absolute numbers or values relative to the size of the window.
When using absolute numbers, the values are set once, when the gadget is created. When using relative
numbers, the size and position of the select box are adjusted dynamically every time the window size
changes.

The gadget image is positioned relative to the select box so when the select box moves the whole gadget
moves. The size of the gadget image, however, is not usually affected by changes in the select box size
(proportional gadgets are the exception). To create a gadget image that changes size when the select box
and window change size, you have to handle gadget rendering yourself or use a BOOPSI gadget.

SELECT BOX POSITION

To specify relative position or size for the gadget’s select box, set or more of the flags GFLG_RELRIGHT,
GFLG_RELBOTTOM, GFLG_RELWIDTH or GFLG_RELHEIGHT in the Flags ficld of the Gadget
structure. When using GFLG_RELxxx flags, the gadget size or position is recomputed each time the
window is sized.

Positioning the Select Box. With GFLG_RELxxx gadgets, all of the imagery must be
contained within the gadget’s select box. This allows Intuition to erase the gadget’s imagery
when the window is sized. Intuition must be able to erase the gadget’s imagery since the
gadget’s position or size will change as the window size changes. If the old one were not
removed, imagery from both sizes/positions would be visible.

If a GFLG_RELxxx gadget’s imagery must extend outside of its select box, position another
GFLG_RELxxx gadget with a larger select box such that all of the first gadget’s imagery is
within the second gadget’s select box. This ‘‘shadow’’ gadget is only used to clear the first
gadget’s imagery and, as such, it should not have imagery nor should it generate any messages.
It should also be positioned later in the gadget list than the first gadget so that its select box
does not interfere with the first gadget.

The left-right position of the select box is defined by the variable LeftEdge, which is an offset from either
the left or right edge of the display element. The offset method is determined by the GFLG_RELRIGHT
flag. For the LeftEdge variable, positive values move toward the right and negative values move toward
the left of the containing display element. If GFLG_RELRIGHT is cleared, LeftEdge is an offset (usually
a positive value) from the left edge of the display element.

124 Amiga ROM Kernel Reference Manual: Libraries

If GFLG_RELRIGHT is set, LeftEdge is an offset (usually a negative value) from the right edge of the
display element. When this is set, the left-right position of the select box in the window is recomputed each
time the window is sized. The gadget will automatically move with the left border as the window is sized.

The top-bottom position of the select box is defined by the variable TopEdge, which is an offset from
either the top or bottom edge of the display element (window or requester). The offset method is
determined by the GFLG_RELBOTTOM flag. For the TopEdge variable, positive values move toward the
bottom and negative values move toward the top of the containing display element.

If GFLG_RELBOTTOM is cleared, TopEdge is an offset (usually a positive value) from the top of the
display element. If GFLG_RELBOTTOM is set, TopEdge is an offset (usually a negative value) from the
bottom of the display element. When this is set, the position of the select box is recomputed each time the
window is sized. The gadget will automatically move with the bottom border as the window is sized.

SELECT BOX DIMENSION

The height and width of the gadget select box can be absolute or they can be relative to the height and
width of the display element in which the gadget resides.

Set the gadget’s GFLG_RELWIDTH flag to make the gadget’s width relative to the width of the window.
When this flag is set, the Width value is added to the current window width to determine the width of the
gadget select box. The Width value is usually negative in this case, making the width of the gadget smaller
than the width of the window. If GFLG_RELWIDTH is not set, Width will specify the actual width of the
select box.

The actual width of the box will be recomputed each time the window is sized. Setting
GFLG_RELWIDTH and a gadget width of zero will create a gadget that is always as wide as the window,
regardless of how the window is sized.

The GFLG_RELHEIGHT flag has the same effect on the height of the gadget select box. If the flag is set,
the height of the select box will be relative to the height of the window, and the actual height will be
recomputed each time the window is sized. If the flag is not set, the value will specify the actual height of
the select box.

Here are a few examples of gadgets that take advantage of the special relativity modes of the select box.
Consider the Intuition window sizing gadget. The LeftEdge and TopEdge of this gadget are both defined
relative to the right and bottom edges of the window. No matter how the window is sized, the gadget
always appears in the lower right corer.

For the window drag gadget, the LeftEdge and TopEdge are always absolute in relation to the top left
corner of the window. Height of this gadget is always an absolute quantity. Width of the gadget,
however, is defined to be zero. When Width is combined with the effect of the GFLG_RELWIDTH flag,
the drag gadget is always as wide as the window.

For a program with several requesters, each of which has an ‘“‘OK’’ gadget in the lower left corner and a
‘““Cancel’” gadget in the lower right corner, two gadgets may be designed that will appear in the correct
position regardless of the size of the requester. Design the ‘“OK’’ and ‘‘Cancel’’ gadgets such that they are
relative to the lower left and lower right corers of the requester. Regardless of the size of the requesters,
these gadgets will appear in the correct position relative to these corners. Note that these gadgets may only
be used in one window or requester at a time.

Intuition Gadgets 125

POSITIONING GADGETS IN WINDOW BORDERS

Gadgets may be placed in the borders of a window. To do this, set one or more of the border flags in the
Gadget structure and position the gadget in the window border. Setting these flags also tells Intuition to
adjust the size of the window’s borders to accommodate the gadget.

Borders are adjusted only when the window is opened. Although the application can add and remove
gadgets with AddGList() and RemoveGList() after the window is opened, Intuition does not readjust the
borders.

A gadget may be placed into two borders by setting multiple border flags. If a gadget is to be placed in two
borders, it only makes sense to put the gadget into adjoining borders. Setting both side border flags or both
the top and bottom border flags for a particular gadget, will create a window that is all border.

See the SuperBitMap example, lines.c, in the “‘Intuition Windows’ chapter for an example of creating
proportional gadgets that are positioned within a window’s borders.

There are circumstances where the border size will not adjust properly so that the gadget has the correct
visual appearance. One way to correct this problem is to place a ‘‘hidden’’ gadget into the border, which
forces the border to the correct size. Such a gadget would have no imagery and would not cause any
IDCMP messages to be sent on mouse button activity. The gadget should be placed at the end of the gadget
list of the window, so that it does not cover up any other border gadgets.

Sometimes the sizing gadget can be used to adjust the width of the borders, as in the case of proportional
gadgets in the right or bottom border. The proportional gadget will only increase the width of the border by
enough so that the select box of the gadget fits within the border, no space is reserved between the gadget
and the inner edge of the window. By placing the size gadget in both borders (using the window flags
WFLG_SIZEBRIGHT and WFLG_SIZEBBOTTOM), the prop gadget sizes can be adjusted so that there is
an even margin on all sides. This technique is used in the lines.c example mentioned above.

Size Gadget in Size Gadget in Size Gadget in
both borders . bottom border side border

Figure 5-2: Size Gadget in Various Window Border Combinations

The border flags GACT_RIGHTBORDER, GACT_LEFTBORDER, GACT_TOPBORDER and
GACT_BOTTOMBORDER which are set in the Activation field of the Gadget structure declare that the
gadget will be positioned in the border. Gadgets which are declared to be in the border are automatically
refreshed by Intuition whenever the window borders need to be redrawn. This prevents the gadget imagery
from being obliterated.

126 Amiga ROM Kernel Reference Manual: Libraries

Some applications forgot to declare some of their gadgets as being in the border. While they looked fine
prior to V36, they would have had some gadget imagery overwritten by the new style of window borders
introduced with that release. To ensure compatibility with such applications, Intuition attempts to identify
gadgets that are substantially in the border but do not have the appropriate border flags set. Such gadgets
arc marked for the same refresh treatment as explicit border gadgets. Applications should not rely on this
behavior, but should instead declare their border gadgets properly.

Gadgets that are not declared to be in the border, and whose dimensions are 1 x 1 or smaller are never
marked by Intuition as being effectively in the border. This is because some applications tuck a small non-
selectable gadget (of size 0x0 or 1x1) into the window border, and attach imagery for the window to that
gadget. The application docs this to get automatic refresh of that imagery, since Intuition refreshes gadget
imagery when window damage occurs.

Beginning with V36, Intuition attempts to locate gadgets within the border that do not have the appropriate
flags set. This may cause gadgets to appear in the border when the application has not set any of the border
flags. Applications should not rely on this behavior, nor should they place non-border gadgets fully or
partially within the window’s borders.

Gadget Highlighting

In general, the appearance of an active or sclected gadget changes to inform the user the gadget state has
changed. A highlighting method is specified by setting one of the highlighting flags in the Gadget
structure’s Flags field.

Intuition supports three methods of activation or selection highlighting:

o Highlighting by color complementing (GFLG_GADGHCOMP)

o Highlighting by drawing a box (GFLG_GADGHBOX)

o Highlighting by an alternate image or border (GFLG_GADGHIMAGE)

o No highlighting (GFLG_GADGHNONE)

One of the highlighting types or GFLG_GADGHNONE must be specified for each gadget.

HIGHLIGHTING BY COLOR COMPLEMENTING

Highlighting may be accomplished by complementing all of the colors in the gadget’s select box. In this
context, complementing means the complement of the binary number used to represent a particular color
register. For example, if the color in color register 2 is used (binary 10) in a specific pixel of the gadget, the
complemented value of that pixel will be the color in color register 1 (binary 01).

To use this highlighting method, set the GFLG_GADGHCOMP flag.
Only the select box of the gadget is complemented; any portion of the text, image, or border which is

outside of the select box is not disturbed. See the chapter *‘Intuition Images, Line Drawing, and Text,”’ for
more information about complementing and about color in general.

Intuition Gadgets 127

HIGHLIGHTING BY DRAWING A BOX

To highlight by drawing a simple border around the gadget’s select box, set the GFLG_GADGHBOX bit in
the Flags field.

HIGHLIGHTING WITH AN ALTERNATE IMAGE OR ALTERNATE BORDER

An alternate image may be supplied as highlighting for gadgets that use image rendering, similarly an
alternate border may be supplied for gadgets that use border rendering. When the gadget is active or
selected, the alternate image or border is displayed in place of the default image or border. For this
highlighting method, set the SelectRender field of the Gadget structure to point to the Image structure or
Border structure for the alternate display.

Specify that highlighting is to be done with alternate imagery by setting the GFLG_GADGHIMAGE flag in
the Flags field of the Gadget structure. When using GFLG_GADGHIMAGE, remember to set the
GFLG_GADGIMAGE flag for images, clear it for borders.

When using alternate images and borders for highlighting, gadgets rendered with images must highlight
with another image and gadgets rendered with borders must highlight with another border. For information
about how to create an Image or Border structure, see the chapter ‘‘Intuition Images, Line Drawing, and
Text.”

Gadget Refreshing

Gadget imagery is redrawn by Intuition at appropriate times, €.g., when the user operates the gadget. The
imagery can also be updated under application control.

GADGET REFRESHING BY INTUITION

Intuition will refresh a gadget whenever an operation has damaged the layer of the window or requester to
which it is attached. Because of this, the typical application does not need to call RefreshGList() as a part
of its IDCMP_REFRESHWINDOW event handling.

Intuition’s refreshing of the gadgets of a damaged layer is done through the layer’s damage list. This
means that rendering is clipped or limited to the layer’s damage region--that part of the window or
requester that needs refreshing.

Intuition directly calls the Layers library functions BeginUpdate() and EndUpdate(), so that rendering is
restricted to the proper areca. Applications should not directly call these functions under Intuition, instead,
use the BeginRefresh() and EndRefresh() calls. Calls to RefreshGList() or RefreshGadgets() between
BeginRefresh() and EndRefresh() are not permitted. Never add or remove gadgets between the
BeginRefresh() and EndRefresh() calls.

For more information on BeginRefresh() and EndRefresh(), see the ‘‘Intuition Windows’’ chapter and the
Amiga ROM Kernel Reference Manual: Includes and Autodocs.

Gadgets which are positioned using GFLG_RELBOTTOM or GFLG_RELRIGHT, or sized using
GFLG_RELWIDTH or GFLG_RELHEIGHT pose a problem for this scheme. When the window is sized,

128 Amiga ROM Kernel Reference Manual: Libraries

the images for these gadgets must change, even though they are not necessarily in the damage region.
Therefore, Intuition must add the original and new visual regions for such relative gadgets to the damage
region before refreshing the gadgets. The result of this is that applications should ensure that any gadgets
with relative position or size do not have Border, Image or IntuiText imagery that extends beyond their
select boxes.

GADGET REFRESHING BY THE PROGRAM

The AddGList() function adds gadgets to Intuition’s internal lists but do not display their imagery.
Subsequently calls to RefreshGList() must be made to draw the gadgets into the window or requester.

Programs may use RefreshGList() to update the display after making changes to their gadgets. The
supported changes include (not an exhaustive list): changing the GFLG_SELECTED flag for boolean
gadgets to implement mutually exclusive gadgets, changing the GadgetText of a gadget to change its label,
changing the GFLG_DISABLED flag, and changing the contents of the StringInfo structure Buffer of a
string gadget. When making changes to a gadget, be sure to remove the gadget from the system with
RemoveGList() before altering it. Remember to add the gadget back and refresh its imagery.

Boolean gadgets rendered with borders, instead of images, or highlighted with surrounding boxes
(GFLG_GADGHBOX) are handled very simply by Intuition, and complicated transitions done by the
program can get the rendering out of phase. Applications should avoid modifying the imagery and
refreshing gadgets that may be highlighted due to selection by the user. Such operations may leave pixels
highlighted when the gadget is no longer selected. The problems with such transitions can often be avoided
by providing imagery, either image or border, that covers all pixels in the select box. For
GFLG_GADGHIMAGE gadgets, the select imagery should cover all pixels covered in the normal imagery.

Updating a Gadget’s Imagery

The RefreshGList() function was designed to draw gadgets from scratch, and assumes that the underlying
area is blank. This function cannot be used blindly to update gadget imagery. The typical problem that
arises is that the application cannot change a gadget from selected to unselected state (or from disabled to
enabled state) and have the imagery appear correct. However, with a little care, the desired results can be
obtained.

Depending on the imagery you select for your gadget, the rendering of one state may not completely
overwrite the rendering of a previous one. For example, consider a button which consists of a
complement-highlighted boolean gadget, whose imagery is a surrounding Border and whose label is an
IntuiText. Attempting to visually unselect such a gadget by clearing its GFLG_SELECTED flag and
refreshing it will leave incorrect imagery because RefreshGList() just redraws the border and text, and
never knows to erase the field area around the text and inside the gadget. That area will remain
complemented from before.

One solution is to use a gadget whose imagery is certain to overwrite any imagery left over from a different
state. Disabling a gadget or highlighting it with complement mode affects the imagery in the entire select
box. To overwrite this successfully, the gadget’s imagery (GadgetRender) should be an Image structure
which fully covers the select box. Such a gadget may be highlighted with color complementing
(GFLG_GADGHCOMP), or with an alternate image (GFLG_GADGHIMAGE) for its SelectRender. Or,
for a gadget which will never be disabled but needs to be deselected programmatically, you may also use a
Border structure for its GadgetRender, and an identically-shaped (but differently colored) Border for its
SelectRender.

Intuition Gadgets 129

The other technique is to pre-clear the underlying area before re-rendering the gadget. To do this, remove
the gadget, erase the rectangle of the gadget’s select area, change the GFLG_SELECTED or the
GFLG_DISABLED flag, add the gadget back, and refresh it.

If the gadget has a relative size and/or position (i.e., if of the GFLG_RELxxx flags are used), then the
application will need to compute the rectangle of the gadget’s select area based on the window’s current
width and/or height. Since the window size is involved in the calculation, it is important that the window
not change size between the call to RemoveGList() and the call to RectFill(). To ensure this, the
application should set IDCMP_SIZEVERIFY so that Intuition will first notify you before beginning a
sizing operation. (Note that applications using any of the IDCMP verify events such as
IDCMP_SIZEVERIFY should not delay long in processing such events, since that holds up the user, and
also Intuition may give up and stop waiting for you).

Gadget Refresh Function

Use the RefreshGList() function to refresh one or more gadgets in a window or requester.

void RefreshGList (struct Gadget *gadgets, struct Window *window,
struct Requester *requester, long numGad);

This function redraws no more than numGad gadgets, starting with the specified gadget, in a window or
requester. The application should refresh any gadgets after adding them. The function should also be used
after the application has modified the imagery of the gadgets to display the new imagery.

Gadget Enabling and Disabling

A gadget may be disabled so that it cannot be chosen by the user. When a gadget is disabled, its image is
ghosted. A ghosted gadget is overlaid with a pattern of dots, thereby making the imagery less distinct. The
dots are drawn into the select box of the gadget and any imagery that extends outside of the select box is
not affected by the ghosting.

The application may initialize whether a gadget is disabled by setting the GFLG_DISABLED flag in the
Gadget structure’s Flags ficld before a gadget is submitted to Intuition. Clear this flag to create an enabled
gadget.

After a gadget is submitted to Intuition for display, its current enable state may be changed by calling
OnGadget() or OffGadget(). If the gadget is in a requester, the requester must currently be displayed
when calling these functions.

void OnGadget (struct Gadget *gadget, struct Window *window, struct Requester *requester);
void OffGadget (struct Gadget *gadget, struct Window *window, struct Requester *requester);

Depending on what sort of imagery you choose for your gadget, OnGadget() may not be smart enough to
correct the gadget’s displayed imagery. See the section on ‘‘Updating a Gadget’s Imagery’’ for more
details.

Multiple gadgets may be enabled or disabled by calling OnGadget() or OffGadget() for each gadget, or by

removing the gadgets with RemoveGList(), setting or clearing the GFLG_DISABLED flag on each,
replacing the gadgets with AddGList(), and refreshing with RefreshGList().

130 Amiga ROM Kernel Reference Manual: Libraries

Gadget Pointer Movements

If the GACT_FOLLOWMOUSE flag is set for a gadget, the application will receive mouse movement
broadcasts as long as the gadget is active. This section covers the behavior of proportional, boolean and
string gadgets, although there are major caveats in some cases:

o Unlike IDCMP_GADGETUP and IDCMP_GADGETDOWN IntuiMessages, the IAddress field of
an IDMP_MOUSEMOVE IntuiMessage does not point to the gadget. The application must track the
active gadget (this information is readily obtained from the IDCMP_GADGETDOWN message)
instead of using the IAddress ficld.

Right Wrong

imsg=GetMsqg (win->UserPort); imsg=GetMsg (win->UserPort);

class=imsg->Class; class=imsg->Class;

code=imsg->Code; code=imsg->Code;

/* OK */ /* ILLEGAL ! */

iaddress=imsg->JAddress; gadid=((struct Gadget *)imsg->IAddress)->GadgetID;
ReplyMsg (imsg) ; ReplyMsg (imsg);

Using the code in the left column, it is acceptable to get the address of a gadget with gadid=((struct
Gadget *)iaddress)->GadgetID but only after you have checked to make sure the message is an
IDCMP_GADGETUP or IDCMP_GADGETDOWN.

o Boolean gadgets only receive mouse messages if both GACT_RELVERIFY and
GACT_FOLLOWMOUSE are set. Those cases described below with GACT_RELVERIFY cleared
do not apply to boolean gadgets.

o In general, IDCMP_MOUSEMOVE messages are sent when the mouse changes position while the
gadget is active. Boolean and proportional gadgelts are active while the mouse button is held down,
thus mouse move messages will be received when the user ‘‘drags’ with the mouse. String gadgets
are active until terminated by keyboard entry or another object becomes active (generally by user
clicking the other object). GACT_FOLLOWMOUSE string gadgets will generate mouse moves the
entire time they are active, not just when the mouse button is held.

The broadcasts received differ according to the gadget’s flag settings. If using the GACT_IMMEDIATE
and GACT_RELVERIFY activation flags, the program gets a gadget down message, receives mouse
reports (IDCMP_MOUSEMOVE) as the mouse moves, and receives a gadget up message when the mouse
button is released. For boolean gadgets, the mouse button must be released while the pointer is over the
gadget. If the button is not released over the boolean gadget, an IDCMP_MOUSEBUTTONS message
with the SELECTUP qualifier will be sent.

If only using the GACT_IMMEDIATE activation flag, the program gets a gadget down message and
receives mouse reports as the mouse moves. The mouse reports will stop when the user releases the mouse
select button. This case does not apply to boolean gadgets as GACT_RELVERIFY must be set for boolean
gadgets to receive mouse messages. If only using the GACT_RELVERIFY activation flag, the program
gets mouse reports followed by an up event for a gadget. For boolean gadgets, the IDCMP_GADGETUP
event will only be received if the button was released while the pointer was over the gadget. If the button is
not released over the boolean gadget, a IDCMP_MOUSEBUTTONS message with the SELECTUP
qualifier will be received if the program is receiving these events.

If neither the GACT_IMMEDIATE nor the GACT_RELVERIFY activation flags are set, the program will
only receive mouse reports. This case does not apply to boolean gadgets as GACT_RELVERIFY must be
set for boolean gadgets to receive mouse messages.

Intuition Gadgets 131

Gadget Structure

Here

is the specification for the Gadget structure defined in <intuition/intuition.h>. You create an instance

of this structure for each gadget you place in a window or requester:

struct Gadget

{

struct Gadget *NextGadget;
WORD LeftEdge, TopEdge;
WORD Width, Height;

UWORD Flags;

UWORD Activation;

UWORD GadgetType;

APTR GadgetRender;

APTR SelectRender;

struct IntuiText *GadgetText;
LONG MutualExclude;

APTR Speciallnfo;

UWORD GadgetID;

APTR UserData;

i

Next

Gadget

Applications may create lists of gadgets that may be added to a window or requester with a single
instruction. NextGadget is a pointer to the next gadget in the list. The last gadget in the list should
have a NextGadget value of NULL.

When gadgets are added or removed, Intuition will modify the appropriate NextGadget ficlds to
maintain a correctly linked list of gadgets for that window or requester. However, removing one or
more gadgets does not reset the last removed gadget’s NextGadget ficld to NULL.

LeftEdge, TopEdge, Width, Height

These variables describe the location and dimensions of the select box of the gadget. Both location
and dimensions can be either absolute values or else relative to the edges and size of the window or
requester that contains the gadget.

LeftEdge and TopEdge are relative to one of the corners of the display element, according to how
GFLG_RELRIGHT and GFLG_RELBOTTOM are set in the Flags variable (see below).

Width and Height are either absolute dimensions or a negative increment to the width abd height of a
requester or a window, according to to how the GFLG_RELWIDTH and GFLG_RELHEIGHT flags
are set (see below).

Flags

The Flags field is shared by the program and Intuition. Sce the section below on ‘‘Gadget Flags’’ for
a complete description of all the flag bits.

Activation

132

This field is used for information about some gadget attributes. See the ‘‘Gadget Activation Flags”’
section below for a description of the various flags.

Amiga ROM Kernel Reference Manual: Libraries

GadgetType
This field contains information about gadget type and in what sort of display element the gadget is to

be displayed. One of the following flags must be set to specify the type:

GTYP_BOOLGADGET
Boolean gadget type.

GTYP_STRGADGET
String gadget type. For an integer gadget, also set the GACT_LONGINT flag. See the ‘‘Gadget
Activation Flags’’ section below.

GTYP_PROPGADGET
Proportional gadget type.

GTYP_CUSTOMGADGET
Normally not set by the application. Used by custom BOOPSI gadget types, discussed in the
“BOOPSI”’ chapter.

The following gadget types may be set in addition to one of the above types. None of the following
types are required:

GTYP_GZZGADGET
If the gadget is placed in a GimmeZeroZero window, setting this flag will place the gadget in the
border layer, out of the inner window. If this flag is not set, the gadget will go into the inner
window. Do not set this bit if this gadget is not placed in a GimmeZeroZero window.

GTYP_REQGADGET
Set this bit if this gadget is placed in a requester.

GadgetRender
A pointer to the Image or Border structure containing the graphics imagery of this gadget. If this
field is set to NULL, no rendering will be done.

If the graphics of this gadget are implemented with an Image structure, this field should contain a
pointer to that structure and the GFLG_GADGIMAGE flag must be set. If a Border structure is used,
this field should contain a pointer to the Border structure, and the GFLG_GADGIMAGE bit must be
cleared.

SelectRender
If the application does not use an alternate image for highlighting, set this field to NULL. Otherwise,
if the flag GFLG_GADGHIMAGE is set, this field must contain a pointer to an Image or Border
structure. The GFLG_GADGIMAGE flag determines the type of the rendering. Provide a pointer to
an IntuiText structure to include a text component to the gadget. Multiple IntuiText structures may
be chained. Set this field to NULL if the gadget has no associated text.

GadgetText
Provide a pointer to an IntuiText structure to include a text component to the gadget. Multiple
IntuiText structures may be chained. Set this field to NULL if the gadget has no associated text.

The offsets in the IntuiText structure are relative to the top left of the gadget’s select box.

Intuition Gadgets 133

MutualExclude
This field is currently ignored by Intuition, but is reserved. Do not store information here. Starting
with V36, if the GadgetType is GTYP_CUSTOMGADGET this field is used to point to a Hook for the
custom gadget.

Speciallnfo
SpecialInfo contains a pointer to an extension structure which contains the special information needed
by the gadget.

If this is a proportional gadget, this variable must contain a pointer to an instance of a PropInfo data
structure. If this is a string or integer gadget, this variable must contain a pointer to an instance of a
StringInfo data structure. If this is a boolean gadget with GACT_BOOLEXTEND activation, this
variable must contain a pointer to an instance of a BoolInfo data structure. Otherwise, this variable is
ignored.

GadgetID
This variable is for application use and may contain any value. It is often used to identify the specific
gadget within an event processing loop. This variable is ignored by Intuition.

UserData
This variable is for application use and may contain any value. It is often used as a pointer to a data
block specific to the application or gadget. This variable is ignored by Intuition.

GADGET FLAGS

The following are the flags that can be set in the Flags variable of the Gadget structure. There are four
highlighting methods to choose from. These determine how the gadget imagery will be changed when the
gadget is selected. One of these four flags must be set.

GFLG_GADGHNONE
Set this flag for no highlighting.

GFLG_GADGHCOMP
This flag chooses highlighting by complementing all of the bits contained within the gadget’s select
box.

GFLG_GADGHBOX
This flag chooses highlighting by drawing a complemented box around the gadget’s select box.

GFLG_GADGHIMAGE
Set this flag to indicate highlighting with an alternate image.

In addition to the highlighting flags, these other values may be set in the Flags field of the Gadget
structure.

GFLG_GADGIMAGE
If the gadget has a graphic, and it is implemented with an Image structure, set this bit. If the graphic
is implemented with a Border structure, make sure this bit is clear. This bit is also used by
SelectRender to determine the rendering type.

134 Amiga ROM Kernel Reference Manual: Libraries

GFLG_RELBOTTOM
Set this flag if the gadget’s TopEdge variable describes an offset relative to the bottom of the display
element (window or requester) containing it. A GFLG_RELBOTTOM gadget moves automatically as
its window is made taller or shorter. Clear this flag if TopEdge is relative to the top of the display
element. If GFLG_RELBOTTOM is set, TopEdge should contain a negative value, which will
position it up from the bottom of the display clement.

GFLG_RELRIGHT
Set this flag if the gadget’s LeftEdge variable describes an offset relative to the right edge of the
display eclement containing it. A GFLG_RELRIGHT gadget moves automatically as its window is
made wider or narrower. Clear this flag if LeftEdge is relative to the left edge of the display element.
If GFLG_RELRIGHT is set, LeftEdge should contain a negative value, which will position the gadget
left of the right edge of the display element.

GFLG_RELWIDTH
Set this flag for ‘‘relative gadget width.”” If this flag is set, the width of the gadget’s select box
changes automatically whenever the width of its window changes. When using GFLG_RELWIDTH,
set the gadget’s Width to a negative value. This value will be added to the width of the gadget’s
display element (window or requester) to determine the actual width of the gadget’s select box.

GFLG_RELHEIGHT
Set this flag for ‘“‘relative gadget height.”” If this flag is set, the height of the gadget’s select box
changes automatically whenever the height of its window changes. When using
GFLG_RELHEIGHT, set the gadget’s Height to a negative value. This value will be added to the
height of the gadget’s display element (window or requester) to determine the actual height of the
gadget’s sclect box.

GFLG_SELECTED
Use this flag to preset the on/off selected state for a toggle-select boolean gadget (see the discussion of
the GACT_TOGGLESELCT flag below). If the flag is set, the gadget is initially selected and is
highlighted. If the flag is clear, the gadget starts off in the unselected state. To change the selection
state of one or more gadgets, change their GFLG_SELECTED bits as appropriate, add them back and
refresh them. However, see the section on ‘‘Updating a Gadget’s Imagery’’ for important details.

GFLG_DISABLED
If this flag is set, this gadget is disabled. To enable or disable a gadget after the gadget has been added
to the system, call the routines OnGadget() and OffGadget(). The GFLG_DISABLED flag can be
programmatically altered in much the same way as GFLG_SELECTED above. See the section on
““Updating a Gadget’s Imagery’’ for important details.

GFLG_STRINGEXTEND
The StringInfo Extension field points to a valid StringExtend structure. Usc of this structure is
described later in the ‘‘String Gadget Type’’ section of this chapter. This flag is ignored prior to V37,
scc GACT_STRINGEXTEND for the same functionality under V36. Note that
GACT_STRINGEXTEND is not ignored prior to V36 and should only be set in V36 or later systems.

GFLG_TABCYCLE
This string participates in cycling activation with the tab (or shifted tab) key. If this flag is set, the tab
keys will de-activate this gadget as if the Return or Enter keys had been pressed, sending an
IDCMP_GADGETUP message to the application, then the next string gadget with
GFLG_TABCYCLE set will be activated. Shifted tab activates the previous gadget.

Intuition Gadgets 135

GADGET ACTIVATION FLAGS
These flags may be set in the Activation field of the Gadget structure.

GACT_TOGGLESELECT
This flag applies only to boolean gadgets, and tells Intuition that this is to be a toggle-select gadget,
not a hit-select one. Preset the selection state with the gadget flag GFLG_SELECTED (see above).
The program may check if the gadget is in the sclected state by examining the GFLG_SELECTED
flag at any time.

GACT _IMMEDIATE
If this bit is set, the program will be sent an IDCMP_GADGETDOWN message when the gadget is
first picked. The message will be sent when the user presses the mouse select button.

GACT_RELVERIFY
This is short for “‘release verify.”” If this bit is set, the program will be sent an IDCMP_GADGETUP
message when the gadget is deactivated. IDCMP_GADGETUP will be sent for boolean gadgets when
the user releases the mouse select button while the pointer is over the select box, for proportional
gadgets whenever the user releases the mouse select button (regardless of the pointer position), and for
string and integer gadgets when the user completes the text entry by pressing return or tabbing to the
next gadget (where supported).

For boolean gadgets, if the user releases the mouse button while the pointer is outside of the gadget’s
select box IDCMP_GADGETUP will not be generated. Instead, the program will receive an
IDCMP_MOUSEBUTTONS event with the SELECTUP code set. For string gadgets, if the user
deactivates the gadget by clicking elsewhere, it may not be possible to detect.

GACT_ENDGADGET
This flag pertains only to gadgets attached to requesters. If a gadget with the GACT_ENDGADGET
flag set is chosen by the user the requester will be terminated as if the application had called the
EndRequest() function.

See the chapter “‘Intuition Requesters and Alerts,”” for more information about requester gadget
considerations.

GACT _FOLLOWMOUSE
These flags may be sct in the Activation field of the Gadget structure. As long as a gadget that has
this flag set is active, the program will receive mouse position messages for each change of mouse
position. For GTYP_BOOLGADGET gadgets, GACT_RELVERIFY must also be sct for the program
to receive mouse events.

The following flags are used to place application gadgets into a specified window border. Intuition will
adjust the size of a window’s borders appropriately provided these gadgets are set up with a call to
OpenWindow(), OpenWindowTags() or OpenWindowTagList(). Intuition knows to refresh gadgets
marked with these flags when the window border is changed, e.g., when the window is activated. For
GimmeZeroZero windows, the GTYP_GZZGADGET flag must also be set for border gadgets.

GACT_RIGHTBORDER

If this flag is set, the gadget is placed in the right border of the window and the width and position of
this gadget are used in deriving the width of the window’s right border.

136 Amiga ROM Kernel Reference Manual: Libraries

GACT_LEFTBORDER
If this flag is set, the gadget is placed in the left border of the window and the width and position of
this gadget are used in deriving the width of the window’s left border.

GACT_TOPBORDER
If this flag is set, the gadget is placed in the top border of the window and the height and position of
this gadget are used in deriving the height of the window’s top border.

GACT_BOTTOMBORDER
If this flag is set, the gadget is placed in the bottom border of the window and the height and position
of this gadget are used in deriving the height of the window’s bottom border.

The following flags apply only to string gadgets:

GACT_STRINGCENTER
If this flag is set, the text in a string gadget is centered within the select box.

GACT_STRINGRIGHT
If this flag is set, the text in a string gadget is right justified within the select box.

GACT_STRINGLEFT
This *‘flag” has a value of zero. By default, the text in a string gadget is left justified within the select
box.

GACT_LONGINT
If this flag is set, the user can construct a 32-bit signed integer value in a normal string gadget. The
input buffer of the string gadget must be initialized with an ASCII representation of the starting integer
value.

GACT_ALTKEYMAP
These flags may be set in the Activation field of the Gadget structure. A pointer to the keymap must
be placed in the StringInfo structure variable AltKeyMap.

GACT_BOOLEXTEND
This flag applies only to boolean gadgets. If this flag is set, then the boolean gadget has a Boollnfo
structure associated with it. A pointer to the BoolInfo structure must be placed in the Speciallnfo
field of the Gadget structure.

GACT_STRINGEXTEND
This is an obsolete flag originally defined in V36. It applies only to string gadgets and indicates that
StringInfo.Extension points to a valid StringExtend structure. Although this flag works, it is not
ignored prior to V36 as it should be in order to be backward compatible. This flag is replaced by
GFLG_STRINGEXTEND in V37. GFLG_STRINGEXTEND performs the same function and is
properly ignored on systems prior to V36.

Intuition Gadgets 137

Boolean Gadget Type

A boolean gadget gets yes/no or on/off responses from the user. To make a boolean gadget set the
GadgetType field to GTYP_BOOLGADGET in the Gadget structure.

Boolean gadgets come in two types: hit-select and toggle-select. Hit-select gadgets are only active while
the user holds down the mouse select button. When the button is released, the gadget is unhighlighted.
Action buttons, such as ‘‘OK’’ and ‘‘Cancel’’, are hit-select.

Toggle-select gadgets become selected when the user clicks them. To ‘‘unselect’’ the gadget, the user has
to click the gadget again. Switches, such as a checkbox, are toggle-select.

Set the GACT_TOGGLESELECT flag in the Activation field of the Gadget structure to create a toggle-
select gadget.

The GFLG_SELECTED flag in Gadget structure Flags field determines the initial and current on/off
selected state of a toggle-select gadget. If GFLG_SELECTED is set, the gadget will be highlighted. The
application can set the GFLG_SELECTED flag before submitting the gadget to Intuition. The program
may examine this flag at any time to determine the current state of this gadget.

Try to make the imagery for toggle-select gadgets visually distinct from hit-select gadgets so that their
operation can be determined by the user through visual inspection.

MASKED BOOLEAN GADGETS

Imagery for boolean gadgets is rectangular by default, but non-rectangular boolean gadgets are possible,
with some restrictions. An auxiliary bit plane, called a mask, may be associated with a boolean gadget.
When the user clicks within the select box of the gadget, a further test is made to see if the chosen point is
contained within the mask. Only if it is, does the interaction count as a gadget hit.

With masked boolean gadgets, if the gadget has highlight type GFLG_GADGHCOMP then the
complement rendering is restricted to the mask. This allows for non-rectangular shapes, such as an oval
gadget which highlights only within the oval.

There are some shortcomings to non-rectangular boolean gadgets. For instance, the gadget image is not
rendered through the mask. Images are rectangular blocks, with all bits rendered. In the case of an oval
mask, the image will be rendered in the corner areas even though they are outside of the oval. Also, it is
not possible to mask out the select box, thus non-rectangular masked gadgets cannot overlap in the masked
area. Therefore, such gadgets can’t be crowded together without care. Likewise, the ghosting of a disabled
gadget does not respect the mask, so ghosting of the corners around an oval may be visible, depending on
the colors involved.

To use a masked boolean gadget, fill out an instance of the BoolInfo structure. This structure contains a

pointer to the mask plane data. The application must also set the GACT_BOOLEXTEND flag in the
gadget’s Activation field.

138 Amiga ROM Kernel Reference Manual: Libraries

BOOLINFO STRUCTURE

This is the special data structure required for a masked boolean gadget. A pointer to this structure must be
placed in the gadget’s Speciallnfo field for a masked boolean gadget.

struct BoolInfo
{
UWORD Flags;
UWORD *Mask;
ULONG Reserved;
)i

Flags
Flags must be given the value BOOLMASK.

Mask
This is a bit mask for highlighting and picking the gadget. Construct the mask as a single plane of
Image data would be built. The image’s width and height are determined by the width and height of
the gadget’s select box. The mask data must be in chip memory.

Reserved
Set this field to NULL.

MUTUAL EXCLUDE

Mutual exclusion of boolean gadgets (sometimes referred to as ‘‘radio buttons’”) is not directly supported
by Intuition. This section describes the method an application should use to implement this feature. It is up
to the application to handle the manipulation of excluded gadgets in an Intuition compatible way. The
program must proceed with caution so as to maintain the synchronization of the gadget and its imagery.
The rules provided in this section for the implementation of mutual exclude gadgets minimize the risk and
complexity of the application. Other techniques may seem to work with simple input, but may fail in subtle
ways when stressed.

Gadget Type for Mutual Exclusion

To implement mutual exclusion, gadgets must be hit-select (not GACT_TOGGLESELECT) boolean
gadgets, with the GACT_IMMEDIATE activation type (never GACT_RELVERIFY). All state changes
must be executed upon receiving the IDCMP_GADGETDOWN message for the gadgets. Failure to do this
could introduce subtle out-of-phase imagery problems.

Gadget Highlighting for Mutual Exclusion

When using complement mode highlighting, the image supplied must be at least the size of the
complemented area (the gadget select box). An extended boolean gadget with a mask may be used to
constrain the area that is highlighted.

Alternate image highlighting may be used provided the two images have exactly the same size and position.

Likewise, a border and alternate border may be used provided the two borders are identical in shape and
position, differing only in color.

Intuition Gadgets 139

Do not use other combinations for mutual exclude gadgets such as a gadget with a border that uses
complement mode highlighting or a gadget which uses highlighting by drawing a box. See the section on
¢‘Updating a Gadget’s Imagery’’ for more information.

Handling of Mutually Exclusive Gadgets

Use RemoveGList() to remove the boolean gadget from the window or requester. Set or clear the
GFLG_SELECTED flag to reflect the displayed state of the gadget. Replace the gadget using AddGList()
and refresh its imagery with RefreshGList(). Of course, several gadgets may be processed with a single
call to each of these functions.

Proportional Gadget Type

Proportional gadgets allow an application to get or display an amount, level, or position by moving a
slidable knob within a track. They are called proportional gadgets because the size and position of the
knob is proportional to some application-defined quantity, for example the size of a page, and how much
and which part of the page is currently visible.

An example of using proportional gadgets is available in the ‘“‘Intuition Windows’’ chapter. The
SuperBitMap window example, lines.c, uses proportional gadgets to control the position of the bitmap
within the window.

Proportional gadgets are made up of a container, which is the full size of the gadget, and a knob, that
travels within the container. Changing the current value of the gadget is done by dragging the knob, or
clicking in the container around the knob. Dragging the knob performs a smooth transition from one value
to the next, while clicking in the container jumps to the next page or setting. The KNOBHIT flag in the
PropInfo structure is available to allow the program to determine if the gadget was changed by dragging
the knob or by clicking in the container. If the flag is set, the user changed the value by dragging the knob.

Proportional gadgets allow display and control of fractional settings on the vertical axis, the horizontal axis
or both. While the number of settings has a theoretical limit of 65,536 positions, the actual positioning of
the gadget through sliding the knob is limited by the resolution of the screen. Further control is available
by clicking in the container, although this often is not convenient for the user. Button or arrow gadgets are
often provided for fine tuning of the setting of the gadget.

NEW 3D LOOK PROPORTIONAL GADGETS

Set the PROPNEWLOOK flag in the PropInfo Flags field to get the new 3D look. The new 3D look
proportional gadgets have a dithered pattern in the container and updated knob imagery. The knob
dimensions are also slightly changed for those proportional gadgets with a border.

Set the PROPBORDERLESS flag in the PropInfo Flags field if no border around the container is desired.
Setting this flag with PROPNEWLOOK will provide a 3D knob.

Proportional gadgets and the New 3D Look. To create prop gadgets that have the same
look as the rest of the system, set the PROPNEWLOOK flag and clear the
PROPBORDERLESS flag. It is recommended that applications follow this guideline to
maintain a compatible look and feel for all gadgets in the system.

140 Amiga ROM Kernel Reference Manual: Libraries

New look proportional gadgets placed in the border of a window will change to an inactive
display state when the window is deactivated. This only happens to gadgets that have the
PROPNEWLOOK flag set and are in the window border. In the inactive state, the knob is
filled with BACKGROUNDPEN.

LOGICAL TYPES OF PROPORTIONAL GADGETS

There are two usual ways in which proportional gadgets are used (corresponding to the scroller and slider
gadgets of the GadTools library). The only difference between sliders and scrollers is the way they are
managed internally by the application. The GadTools library provides a high level interface to proportional
gadgets, simplifying the management task for these types of objects.

Scrollers

The scroller controls and represents a limited window used to display a large amount of data. For instance,
a text editor may be operating on a file with hundreds of lines, but is only capable of displaying twenty or
thirty lines at a time.

In a scroller, the container of the gadget is analogous to the total amount of data, while the knob represents
the window. (Note that window here is used as an abstract concept and does not necessarily mean Intuition
window. It just means a display area reserved for viewing the data.)

The size of the knob with respect to its container is proportional to the size of the window with respect to
the total data. Thus, if the window can display half the data, the knob should be half the size of the
container. When the amount of data is smaller than the window size, the knob should be as large as its
container.

The position of the knob with respect to its container is also proportional to the position of the window with
respect to the total data. Thus, if the knob starts half way down the container, the top of the window should
display information half way into the data.

Scrollers may be one or two dimensional. One dimensional scrollers are used to control linear data; such as
a text file, which can be viewed as a linear array of strings. Such scrollers only slide on a single axis.

Two dimensional scrollers are used to control two dimensional data, such as a large graphic image. Such a
scroller can slide on both the horizontal and vertical axes, and the knob’s horizontal and vertical size and
position should be proportional to the window’s size and position in the data set.

Multi-dimensional data may also be controlled by a number of one dimensional scrollers, one for each axis.
The Workbench windows provide an example of this, where one scroller is used for control of the x-axis of
the window and another scroller is used for control of the y-axis of the window. In this case, the size and
position of the knob is proportional to the size and position of the axis represented by the gadget.

If the window has a sizing gadget and has a proportional gadget is the right or bottom border, the sizing
gadget is usually placed into the border containing the proportional gadget, as the border has already been
expanded to contain the gadget. If the window has proportional gadgets in both the right and the bottom
borders, place the sizing gadget into both borders. This creates evenly sized borders that match the height
and width of the sizing gadget, i.e. it is only done for visual effect.

Intuition Gadgets 141

Sliders

The slider is used to pick a specific value within a set. Usually the set is ordered, but this is not required.
An example of this would be choosing the volume of a sound, the speed of an animation or the brightness
of a color. Sliders can move on either the vertical or horizontal axis. A slider that moves on both the
horizontal and the vertical axis could be created to choose two values at once.

An example slider which picks an integer between one and ten, should have the following attributes:

o It should slide on only one axis.
o Values should be evenly distributed over the length of the slider.

o Clicking in the container to either side of the knob should increase (or decrease) the value by one unit.

Stylistically, sliding the knob to the right or top should increase the value, while sliding it to the left or
down should decrease the value. Note that the orientation of proportional gadgets is correct for scrollers
(where the minimum value is topmost or leftmost), but is vertically inverted for sliders. Thus, well-
behaved vertical sliders need to invert their value somewhere in the calculations (or else the maximum will
end up at the bottom).

PROPORTIONAL GADGET COMPONENTS

A proportional gadget has several components that work together. They are the container, the knob, the pot
variables and the body variables.

The Container

The container is the area in which the knob can move. It is actually the select box of the gadget. The size
of the container, like that of any other gadget select box, can be relative to the size of the window. The
position of the container can be relative to any of the Intuition window’s border.

Clicking in the container around the knob will increment or decrement the value of the gadget (the pot
variables) by the appropriate amount (specified in the body variables). The knob will move towards the
point clicked when action is taken.

The Knob

The knob may be manipulated by the user to quickly change the pot variables. The knob acts like a real-
world proportional control. For instance, a knob restricted to movement on a single axis can be thought of
as a control such as the volume knob on a radio. A knob that moves on both axes is analogous to the
control stick of an airplane.

The user can directly move the knob by dragging it on the vertical or horizontal axis. The knob may be
indirectly moved by clicking within the select box around the knob. With each click, the pot variable is
increased or decreased by one increment, defined by the settings of the body variables.

The current position of the knob reflects the pot value. A pot value of zero will place the knob in the top or
leftmost position, a value of MAXPOT will place the knob at the bottom or rightmost position.

142 Amiga ROM Kernel Reference Manual: Libraries

The application can provide its own imagery for the knob or it may use Intuition’s auto-knob. The auto-
knob is a rectangle that changes its width and height according to the current body settings. The auto-knob
is proportional to the size of the gadget. Therefore, an auto-knob can be used in a proportional gadget
whose size is relative to the size of the window, and the knob will maintain the correct size, relative to the
size of the container.

Use Separate Imagery for Proportional Gadgets. These Image structures may not be
shared between proportional gadgets, each must have its own. Again, do not share thc Image
structures between proportional gadgets. This does not work, either for auto-knob or custom

imagery.

Use Only One Image for the Knob. Proportional gadget knob images may not be a list of
images. These must be a single image, initialized and ready to display if a custom image is
used for the knob.

The Pot Variables

The HorizPot and VertPot variables contain the actual proportional values entered into or displayed by the
gadget. The word pot is short for potentiometer, which is an electrical analog device used to adjust a value
within a continuous range.

The proportional gadget pots allow the program to set the current position of the knob within the container,
or to read the knob’s current location.

The pot variable is a 16-bit, unsigned variable that contains a value ranging from zero to OXFFFF. For
clarity, the constant MAXPOT is available, which is equivalent to OxFFFF. A similar constant
MAXBODY is available for the body variables. As the pot variables are only 16 bits, the resolution of the
proportional gadgets has a maximum of 65,536 positions (zero to 65,535).

The values represented in the pot variables are usually translated or converted to a range of numbers more
useful to the application. For instance, if a slider covered the range one to three, pot values of zero to
16,383 would represent one, values of 16,384 to 49,151 would represent two and values of 49,152 to
65,535 would represent three. The method of deriving these numbers is fairly complex, refer to the sample
code below for more information.

There are two pot variables, as proportional gadgets are adjustable on the horizontal axis, the vertical axis
or both. The two pot variables are independent and may be initialized to any 16-bit, unsigned value.

Pot values change while the user is manipulating the gadget. The program may read the values in the pots
at any time after it has submitted the gadget to the user via Intuition. The values always have the current
settings as adjusted by the user.

The Body Variables

The HorizBody and VertBody variables describe the standard increment by which the pot variables change
and the relative size of the knob when auto-knob is used. The increment, or typical step value, is the value
added to or subtracted from the internal knob position when the user clicks in the container around the
knob. For example, a proportional gadget for color mixing might allow the user to add or subtract 1/16 of
the full value each time, thus the body variable should be set to MAXBODY / 16.

Intuition Gadgets 143

Body variables are also used in conjunction with the auto-knob (described above) to display for the user
how much of the total quantity of data is displayed. Additionally, the user can tell at a glance that clicking
in the container around the knob will advance the position by an amount proportional to the size of the
knob.

For instance, if the data is a fifieen line text file, and five lines are visible in the display, then the body
variable should be set to one third of MAXBODY. In this case, the auto-knob will fill one third of the
container, and clicking in the container ahead of the knob will advance the position in the file by one third.

For a slider, the body variables are usually set such that the full percentage increment is represented. This
is not always so for a scroller. With a scroller, some overlap is often desired between successive steps. For
example, when paging through a text editor, one or two lines are often left on screen from the previous
page, making the transition easier on the user.

The two body variables may be set to the same or different increments. When the user clicks in the
container, the pot variables are adjusted by an amount derived from the body variables.

Using the Body and Pot Values

The body and pot values of a proportional gadget are ‘‘Intuition friendly’’ numbers, in that they represent
concepts convenient to Intuition, and not to the application. The application must translate these numbers
to internal values before acting on them.

Functions for Using a Scroller

/t
** FindScrollerValues{ }
* %k
** Function to calculate the Body and Pot values of a proportional gadget
** given the three values total, displayable, and top, representing the
** total number of items in a list, the number of items displayable at one
** time, and the top item to be displayed. For example, a file requester
** may be able to display 10 entries at a time. The directory has 20
** entries in it, and the top one displayed is number 3 (the fourth one,
** counting from zero), then total = 20, displayable = 10, and top = 3.
* K
** Note that this routine assumes that the displayable variable is greater
** than the overlap variable.
* ok
** A final value, overlap, is used to determine the number of lines of
** "overlap" between pages. This is the number of lines displayed from the
** previous page when jumping to the next page.
*/
vold FindScrollerValues (UWORD total, UWORD displayable, UWORD top,
WORD overlap, UWORD *body, UWORD *pot}
{
UWORD hidden;

/* Find the number of unseen lines: */
hidden = max(total - displayable, 0);

/* If top is so great that the remainder of the list won’t even
** fill the displayable area, reduce top:
*/
if (top > hidden)
top = hidden;

/* body is the relative size of the proportional gadget’s knob. Its size

** in the container represents the fraction of the total that is in view.

** If there are no lines hidden, then body should be full-size (MAXBODY).

** Otherwise, body should be the fraction of (the number of displayed

** lines - overlap) / (the total number of lines - overlap). The "- overlap"

144 Amiga ROM Kernel Reference Manual: Libraries

** is so that when the user scrolls by clicking in the container of the
** scroll gadget, then there is some overlap between the two views.

*/

(*body) = (hidden > 0) ?
(UWORD) (({(ULONG) (displayable - overlap) * MAXBODY) / (total - overlap)) :
MAXBODY;

/* pot is the position of the proportional gadget knob, with zero meaning that
** the scroll gadget is all the way up (or left), and full (MAXPOT) meaning

** that the scroll gadget is all the way down (or right). 1If we can see all
** the lines, pot should be zero. Otherwise, pot is the top displayed line

** divided by the number of unseen lines.

*/

(*pot) = (hidden > 0) 2 (UWORD) (((ULONG) top * MAXPOT) / hidden) : 0;

}

/t

*x FindScrollerTop(}

**

** Function to calculate the top line that is displayed in a proportional
** gadget, given the total number of items in the list and the number

** displayable, as well as the HorizPot or VertPot value.

*/

UWORD FindScrollerTop (UWORD total, UWORD displayable, UWORD pot)

{

UWORD top, hidden;

/* Find the number of unseen lines: */
hidden = max(total - displayable, 0);

/* pot can be thought of as the fraction of the hidden lines that are before

** the displayed part of the list, in other words a pot of zero means all

** hidden lines are after the displayed part of the list (i.e. top = 0),

** and a pot of MAXPOT means all the hidden lines are before the displayed

** part (i.e. top = hidden).

* k

** MAXPOT/2 is added to round up values more than half way to the next position.
*/

top = (((ULONG) hidden * pot) + (MAXPOT/2)) >> 16;

/* Once you get back the new value of top, only redraw your list if top
** changed from its previous value. The proportional gadget may not have
** moved far enough to change the value of top.

*/

return(top);

}

Functions for Using a Slider

/t

* % FindSliderValues()

* *

** Function to calculate the Body and Pot values of a slider gadget given the
** two values numlevels and level, representing the number of levels available
** in the slider, and the current level. For example, a Red, Green, or Blue
** glider would have (currently) numlevels = 16, level = the color level (0-15).
*/

void FindSliderValues (UWORD numlevels, UWORD level, UWORD *body, UWORD *pot)

{

/* body is the relative size of the proportional gadget’s body.

** Clearly, this proportion should be 1 / numlevels.

*/

if (numlevels > 0)

(*body) = (MAXBODY) / numlevels;
else

(*body) = MAXBODY;

/* pot is the position of the proportional gadget body, with zero meaning that
** the slider is all the way up (or left), and full (MAXPOT) meaning that the

** glider is all the way down (or right).
* %

** For slider gadgets the derivation is a bit ugly:

Intuition Gadgets

145

* %

** We illustrate a slider of four levels (0, 1, 2, 3) with the slider at

** level 2. The key observation is that pot refers the the leading edge of
** the knob, and as such MAXPOT is not all the way to the right, but is one
** pody’s width left of that.

* K

** Level: 0 1 2 3

KK e

* K |ttttttt|

*

|
| | Xxxx kx|
|

* % |

| I
| |
* % | | Xr KRR | |
| | Kx kK| |

Kk e

** | | |

** 0 pot MAXPOT

* *

** From which we observe that pot = MAXPOT * (level/(numlevels-1))
*/

if (numlevels > 1)
{
(*pot) = (((ULONG)MAXPOT) * level)/ (numlevels-1);
}

else
{
(*pot) = 0;
}
}
/*
** FindSliderLevel()
* *

** Function to calculate the level of a slider gadget given the total number
** of levels as well as the HorizPot or VertPot value.

*/

UWORD FindSliderLevel (UNORD numlevels, UWORD pot)

{

UWORD level;

/* We illustrate a 4-level slider (0, 1, 2, 3) with the knob on the transition
** point between calling it at levels 1 and 2.

**

* *

** Level: 0 1 2 3

R mmccccccccc e P

* * l I t'kl*** I I

* * | | tt*'ttt | '

* * | | ***'ttt | I
| | | |

***l*t*
KK emeececcccc e ———————
*x | | |

o 0 pot MAXPOT

* *

* x

** We’ve already shown that the vertical lines (which represent the natural

** position of the knob for a given level are:

*

*x pot = MAXPOT * (level/(numlevels-1))

* %

** and we see that the threshold between level and level-1 is half-way between
** pot (level) and pot (level-l), from which we get

* *

** level = (numlevels-1) * (pot/MAXPOT) + 1/2

*/

if (numlevels > 1)
{
level = (((ULONG)pot) * (numlevels-1) + MAXPOT/2) / MAXPOT;
}

else

{
level = 0;

}

return(level);
}

146 Amiga ROM Kernel Reference Manual: Libraries

INITIALIZATION OF A PROPORTIONAL GADGET

The proportional gadget is initialized like any other gadget, with the addition of the PropInfo structure.

Initialization of the Propinfo Structure

This is the special data required by the proportional gadget.

struct PropInfo
{
UWORD Flags;
UWORD HorizPot;
UWORD VertPot;
UWORD HorizBody;
UWORD VertBody;
UWORD CWidth;
UWORD CHeight;
UWORD HPotRes, VPotRes;
UWORD LeftBorder;
UWORD TopBorder;
bi

Flags
In the Flags variable, the following flag bits are of interest:

PROPBORDERLESS
Set the PROPBORDERLESS flag to create a proportional gadget without a border.

AUTOKNOB
Set the AUTOKNOB flag in the Flags field to use the auto-knob, otherwise the application must
provide knob imagery.

FREEHORIZ and FREEVERT
Set the FREEHORIZ flag to create a gadget that adjust left-to-right, set the FREEVERT flag for
top-to-bottom movement. Both flags may be set in a single gadget.

PROPNEWLOOK
Set the PROPNEWLOOK flag to create a gadget with the new look. If this flag is not set, the
gadget will be rendered using a V34 compatible design.

KNOBHIT
The KNOBHIT flag is set by Intuition when this knob is hit by the user.

HorizPot and VertPot
Initialize the HorizPot and VertPot variables to their starting values before the gadget is added to the
system. The variables may be read by the application. The gadget must be removed before writing to
these variables, or they may be modified with NewModifyProp().

HorizBody and VertBody
Set the HorizBody and VertBody variables to the desired increment. If there is no data to show or the
total amount displayed is less than the area in which to display it, set the body variables to the
maximum, MAXBODY.

The remaining variables and flags are reserved for use by Intuition.

Intuition Gadgets 147

Initialization of the Gadget Structure

In the Gadget structure, set the GadgetType field to GTYP_PROPGADGET and place the address of the
PropInfo structure in the Speciallnfo field.

When using AUTOKNOB, the GadgetRender field must point to an Image structure. The Image need not
be initialized when using AUTOKNOB, but the structure must be provided. These Image structures may
not be shared between gadgets, each must have its own.

To use application imagery for the knob, set GadgetRender to point to an initialized Image structure. If
the knob highlighting is done by alternate image (GFLG_GADGHIMAGE), the alternate image must be the
same size and type as the normal knob image.

MODIFYING AN EXISTING PROPORTIONAL GADGET

To change the flags and the pot and body variables after the gadget is displayed, the program can call
NewModifyProp().

void NewModifyProp(struct Gadget *gadget, struct Window *window, struct Requester *requester,
unsigned long flags, unsigned long horizPot, unsigned long vertPot,
unsigned long horizBody, unsigned long vertBody, long numGad);

The gadget’s internal state will be recalculated and the imagery will be redisplayed to show the new state.
When numGads (in the prototype above) is set to all ones, NewModifyProp() will only update those parts
of the imagery that have changed, which is much faster than removing the gadget, changing values, adding
the gadget back and refreshing its imagery.

String Gadget Type

A string gadget is an area of the display in which a single field of character data may be entered. When a
string gadget is activated, either by the user or by the application, a cursor appears prompting the user to
enter some text. Any characters typed will be placed into the active string gadget, unless the gadget is
deactivated by other mouse activity or program interaction.

In Release 2, the system also supports tabbing between a group of string gadgets. In this mode, pressing
the tab key will advance the active gadget to the next string gadget and pressing shifted tab will advance to
the previous string gadget.

Control characters are generally filtered out, but may be entered by pressing the Left Amiga key with the
desired control character. The filtering may be disabled by the program, or by the user via the IControl
Preferences editor.

String gadgets feature auto-insert, which allows the user to insert characters wherever the cursor is.
Overwrite mode is also available, and the application may toggle the gadget between the two modes.

When the user activates a string gadget with the mouse, the gadget’s cursor moves to the position of the

mouse. The user may change the position of the cursor both with the cursor keys and with the mouse
pointer.

148 Amiga ROM Kernel Reference Manual: Libraries

A number of simple, keyboard driven editing functions are available to the user. These editing functions
are shown in the following table.

Table 5-1: Editing Keys and Their Functions

Key Function

“— Cursor to previous character.

Shift « Cursor to beginning of string.

- Cursor to next character.

Shift —» Cursor to end of string.

Del Delete the character under the cursor. Does nothing in fixed field
mode.

Shift Del Delete from the character under the cursor to the end of the line. Does
nothing in fixed field mode.

Backspace Delete the character to left of cursor. In fixed field mode, move cursor
to previous character.

Shift Backspace Delete from the character to the left of the cursor to the start of the line.
In fixed field mode, move cursor to beginning of string.

Return or Enter Terminate input and deactivate the gadget. If the GACT_RELVERIFY
activation flag is set, the program will receive a IDCMP_GADGETUP
event for this gadget.

Right Amiga Q Undo (cancel) the last editing change to the string.

Right Amiga X Clears the input buffer. The undo buffer is left undisturbed. In fixed
field mode, move cursor to beginning of string.

The following additional editing functions are available only when ‘‘Filter Control Characters’’ is on for
the string gadget. Control character filtering is only available if the IControl preferences editor has ‘‘Text
Gadget Filter’’ selected and the individual gadget does not have SGM_NOFILTER set.

Table 5-2: Additional Editing Keys and Their Functions

Key Function

Cul A Jump cursor to start of buffer.

Ctrl H Delete the character to the left of the cursor. In fixed field mode, move
cursor to previous character.

Cul K Delete from the character under the cursor to the end of the string.
Does nothing in fixed field mode.

CulM Equivalent to Return or Enter (end gadget).

Cul W Delete the previous word. In fixed field mode, jump cursor to the start
of the previous word.

CulU Delete from the character to the left of the cursor to the start of the
buffer. In fixed field mode, jump cursor to the start of the buffer.

Cul X Clears the input buffer (like Right Amiga X). In fixed field mode, jump
cursor to the start of the buffer.

CulzZ Jump cursor to end of buffer.

Intuition Gadgets 149

INTEGER GADGET TYPE

The integer gadget is really a special case of the string gadget type. Initialize the gadget as a string gadget,
then set the GACT_LONGINT flag in the gadget’s Activation field.

The user interacts with an integer gadget using exactly the same rules as for a string gadget, but Intuition
filters the input, allows the user to enter only a plus or minus sign and digits. The integer gadget returns a
signed 32-bit integer in the StringInfo variable Longlnt.

To initialize an integer gadget to a value, preload the input buffer with an ASCII representation of the initial
integer. It is not sufficient to initialize the gadget by merely setting a value in the LongInt variable.

Integer gadgets have the LongInt value updated whenever the ASCII contents of the gadget changes, and
again when the gadget is deactivated.

STRING GADGET IDCMP MESSAGES

If the application has specified the GACT_RELVERIFY activation flag, it will be sent an
IDCMP_GADGETUP message when the gadget is properly deactivated. This happens when Return or
Enter is pressed, when tabbing to the next string gadget (where supported), and when a custom string
editing hook returns SGA_END.

The gadget may become inactive without the application receiving an IDCMP_GADGETUP message.
This will happen if the user performs some other operation with the mouse or if another window is
activated. The gadget may still contain updated, valid information even though the IDCMP_GADGETUP
message was not received.

PROGRAM CONTROL OF STRING GADGETS

ActivateGadget() allows the program to activate a string gadget (and certain custom gadgets). If
successful, this function has the same effect as the user clicking the mouse select button when the mouse
pointer is within the gadget’s select box and any subsequent keystrokes will effect the gadget’s string.

BOOL ActivateGadget (struct Gadget *gadget, struct Window *window, struct Requester *requester);

This function will fail if the user is in the middle of some other interaction, such as menu or proportional
gadget operation. In that case it returns FALSE, otherwise it returns TRUE. The window or requester
containing the string gadget to be activated must itself be open and active. Since some operations in
Intuition may occur after the function that initiates them completes, calling ActivateGadget() after
OpenWindowTagList() or Request() is no guarantee that the gadget will actually activate. Instead, call
ActivateGadget() only after having received an IDCMP_ACTIVEWINDOW or IDCMP_REQSET
message for a newly opened window or requester, respectively.

The Window Active Message Is Required. 1t is incorrect to simply insert a small delay
between the call to OpenWindowTagList() or Request() and the call to ActivateGadget().
Such schemes fail under various conditions, including changes in processor speed and CPU
loading.

150 Amiga ROM Kernel Reference Manual: Libraries

If you want to activate a string gadget in a newly opened window that has a shared IDCMP UserPort, there
is an additional complication. Sharing UserPorts means that the window is opened without any IDCMP
messages enabled, and only later is ModifyIDCMP() called to turn on message passing. If the newly
opened window becomes active before ModifyIDCMP() is called, the IDCMP_ACTIVEWINDOW
message will not be received (because IDCMP message passing was off at the time). The following code
will handle this problem:

BOOL activated;

/* Open window with NULL IDCMPFlags */
win = OpenWindow(...);

/* Set the UserPort to your shared port, and turn on message passing,
* which includes the IDCMP_ACTIVEWINDOW message.

*/
win->UserPort = sharedport;
ModifyIDCMP (win, ... | IDCMP ACTIVEWINDOW | ...);

/* 1f the window became active before the ModifyIDCMP () got executed,
* then this ActivateGadget () can succeed. If not, then this
* ActivateGadget () might be too early, but in that case, we know
* we’ll receive the IDCMP_ACTIVEWINDOW event. We handle that below.
*/
activated = ActivateGadget (stringgad, win, NULL);

and later, in the event loop:

if ((msg->Class == ACTIVEWINDOW) && (tactivated))
success = ActivateGadget (stringgad,...);

Note however that a window which has the WA_Activate attribute is not guaranteed to be activated upon
opening. Certain conditions (like an active string gadget in another window) will prevent the automatic
initial activation of the w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>