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~-~--------------------------------

Introduction 
Assembly language is the most challenging and rewarding kind of programming there 
is. It's challenging because, to be able to do it, you have to have a good grasp of both 
the processor being programmed and the machine that it's running on. It's rewarding 
because, when a program is finally completed and runs as planned, you have the most 
powerful implementation by which that program could have run on that machine, and 
you've demonstrated your mastery over the computer and its operating system. 

The Amiga is a great machine to be able to program in machine code. The soft
ware interface to the Amiga has been extremely carefully designed and documented. 
Commodore has provided an incredible amount of software developer support. With 
other microcomputers in the past, finding out what was going on at the ROM level 
(where much of the prewritten machine code lies ready to use) was a matter of deduc
tion based on disassembling ROM and finding where various routines were in order 
to avoid having to write them all over again in assembly language. 

Commodore, however, has designed the Amiga to be used at the ROM level right 
from the start. This is accomplished without your even having to know anything about 
the whereabouts of code in ROM. For instance, if you want to draw a line across the 
screen, you won't have to write the routine from scratch. Neither will you have to dis
assemble and locate the routine in the Amiga's ROM. Routines, such as this one and 
any other conceivably useful routine, have already been written by Commodore and 
documented so that they can be called at the machine code level. For each routine, 
you simply supply a set of appropriate parameters, specifying such things as lengths 
and locations of lines, diameters of circles, and style and font of the text. This puts 
the incredible power of the Amiga hardware at your fingertips in assembly language. 
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To add even more to this developer-friendly scenario, the Amiga is driven by a 
Motorola 68000 microprocessor. This chip has a design as neat and logical as the Am
iga itself, and seems to be the ideal "logic engine" for providing the power. Bearing 
in mind its power and the fact that it's probably the most successful of al116/32 bit 
microprocessors, the 68000 is the best one to learn. This is the second reason why the 
Amiga is such a worthwhile machine to learn to program in assembly language. 

So welcome to a journey that will introduce you first to the 68000 and then to the 
Amiga. Remember that the intention of this book is to provide an introduction. The 
first thing you'll want after finishing it is the Commodore-approved technical documen
tation for the Amiga. You'll need at least a copy of the AmigaDOS manual, the Amiga 
Intuition Reference manual, the Amiga ROM Kernel manual, and the Amiga Refer
ence Manual:Exec. These manuals (and a few other optional ones) provide the defini
tive technical reference for the Amiga. They total several hundreds of pages in 
length-and they're not small pages either. My advice is to read this introductory book 
first. 
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An Introduction 
to Assembly Language 

Welcome to what has to be regarded as the upper echelons of computer programming. 
For starters, let me put you at ease by telling you that machine-code programming is 
quite easy. Don't let the sight of thousands of hexadecimal digits convince you that 
something complicated is going on-a computer has to deal with those digits in exactly 
the same way a human would: namely, one at a time. Neither be dissuaded by the sight 
and appearance of many undernourished software hackers or shiny-headed computer 
boffins. Many computer programmers, just as many people in real life, sometimes ap
pear to be a strange and overpriviledged crowd. You don't, however, have to have an 
IQ of 250, stare into a monitor for 15 hours a day, or be weird to program in machine 
code. There's nothing any more strange about the occupation than about driving a bus. 

If you're totally new to computer programming per se, machine-code programming 
is probably the best place to start. I learned machine-code techniques on a hypotheti
cal, nonexistent computer. Since that time, I've been lucky enough to be able to apply 
the same techniques and concepts to learning new computer languages with compara
tive ease. There's much more in common between computer processors (in our case, 
microprocessors) of different manufacturers than there is between the high-level com
puter languages that run on these processors. You, however, don't have to learn on 
a nonexistent computer. By learning machine code directly on the 68000 in your Am
iga, you'll be armed with the knowledge of a very real microprocessor that shares charac
teristics with many other modem-day computer processors. 

So what does the processor do? Understanding this is the key to understanding 
machine code. At its most fundamental level, you could say the function of a processor 
is to logically compute answers to questions posed by inquisitive human beings. The 
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questions asked can range from the trivial, like "how much pay shall this employee 
take home?" to the grandiose, such as "what is the chemical composition of that star 
in Bega Minoris?" In either case, the processor has no innate or built-in knowledge 
of how to solve the problem. In fact, a processor of the current generation has no knowl
edge of anything. It's just a lump of inorganic matter waiting to be told what to do. 

It is best to learn machine code before you learn high-level programming, because 
at this level you're at the very foundations of programming. You're at the heart of the 
computer when you program in machine code-at ground zero. Whatever drives the 
particular computer you're working on, you'll get the most power and speed from that 
computer by talking to the processor in its native tongue. This power and speed has 
a small price, however, and it's this small barrier that places machine-code program
ming at that upper echelon. The native language of a computer processor is, at first 
sight, very alien compared to a human language. This is one penalty. Another one is 
that at the machine code level, a processor can only carry out one tiny instruction at 
a time. Thus, building up a useful machine-code program always requires a large num
ber of steps. This takes time and effort on the part of the programmer, so a good 
machine-code programmer is required to sacrifice time and use a high degree of skill. 
More time and skill is needed than would be needed when the programming is done 
in a high-level language, such as BASIC or COBOL. The skill is needed because the proces
sor works in such small, discrete steps. For example, on a microprocessor, one single 
machine-code instruction is required to add two small digits together. If you wanted 
to add two high-precision numbers including a decimal point floating somewhere within 
the digits, you'd have to write a series of many machine-code instructions to perform 
the task. At the end of such a programming exercise, however, you will have an in
depth knowledge of the techniques required to perform that task. In other words, you 
will have gained expertise. Compare this with a programmer using a high-level lan
guage who simply has to use a plus sign to add two floating-point numbers together. 
It's obviously simpler, but the programmer remains totally ignorant about the tech
niques used to deal with floating-point numbers. Thus, by going through the learning 
process with assembly language, you'll acquire a degree of computing expertise over 
and above the norm. After that, high-level languages seem easy compared with the 
more careful, thought-out process of programming in machine code. 

Computer operating systems have to be programmed (at least in part) in machine 
code. This is because the input/output functions of any computer involve hardware 
devices such as keyboards, video displays, and disk drives. "Driving" these devices 
requires the programmer to work as close to the hardware as possible-at the primi
tive processor level. Machine code is that primitive level. It's this code that is the proces
sor's native tongue. When referring to microcomputer software, machine-code 
instructions can be thought of as atoms that can't be split into anything smaller. One 
machine-code instruction is the smallest possible operation that can be carried out. The 
operations that are performed by each processor instruction are determined within the 
hardware of the particular processor you're using. It's the differences between the hard
ware of one processor as compared to another that makes them appear different from 
one another at the software level. So, by using machine code, you can talk to the hard
ware directly if you so wish. This gives you the maximum power over your computer. 

Computer languages, of course, aren't really languages at all, but because some 
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method of communication is needed to let a computer know what you want it to do, 
the word language seems the most appropriate one to use while attempting to commu
nicate with a computer. Compared with human language, a computer language is just 
a static set of rules that tell a computer what procedure to follow. The processor, which 
is at the heart of any and all computers, can be considered a stupid device-the only 
'clever' thing a binary processor can do internally is add digits together. The only thing 
it really does is to plow through a set of electrically-encoded instructions that it senses 
at its inputs. Each input is either an on voltage or an off voltage. That's why computers 
are said to work in binary-the idea is that an on voltage represents the digit one, and 
an off voltage represents the digit zero. A processor can thus only distinguish between 
zeroes and ones (the binary system). A computer that only knows two numbers doesn't 
seem very useful, but things can be expanded somewhat by the simple expedient of 
allowing more than one binary input line to be input (or read) by the processor. So if 
you added just one more binary digit-called a bit-the processor, sensing both bits 
at once, would be able to recognize four possible combinations. The combinations that 
could exist with two input lines would be: both inputs zero, a zero and a one, a one 
and a zero, and both inputs one. This rudimentary computer would now be able to recog
nize four different external conditions. If yet another input line were added, the num
ber of combinations would double to eight. Add another and it would double again to 
16. The simplicity of the binary counting system starts becoming apparent. In fact, 
every extra input line added to the processor's electronics doubles the number of per
mutations of zeroes and ones recognized. It's an easy matter to work out the number 
of possible permutations from the number of bits input to any device. It's simply two 
to the power of the number of bits input or 2". 

A device with eight input bits could detect two to the power of eight, or 256, different 
possibilities of input. A device with 16 bits can detect two to the power of 16, or 65,536. 
The number of permutations rises quicker than you'd think at first sight. You now have 
the rudiments of a binary system. You can count as high as you like just by represent
ing numbers as different sequences of zeroes and ones. 

The binary numbers that are presented on a processor can represent anything you 
want them to. They can represent simple whole numbers starting at zero and working 
up to the maximum attainable. Alternatively, you could count from zero up to half the 
maximum attainable and leave one unused bit that could be designated as a minus sign. 
This gives a possible way to represent negative numbers. You can represent charac
ters of the alphabet by selecting r~rtain numbers to represent alphabetic symbols. The 
addition of punctuation marks and numeric characters gives an entire, arbitrarily cho
sen, alphanumeric character set. If everyone sensibly chooses to agree which numbers 
represent which symbols (as with the ASCII character set), different computers can 
act on the same quantities, knowing they represent particular characters. 

Another very important thing that can be done is to have the binary numbers rep
resent actions to be taken by the processor. For instance, you could tell the processor 
to halt when it detects a combination of all ones on its input lines, or you could tell 
it to add two numbers when it senses all zeroes. In this way, numbers can represent 
actions or commands to be followed by the processor. All that's needed is for the proces
sor to automatically step sequentially through a list of binary numbers in memory, and 
you have a sequence of predetermined events. In TV, radio, or theater, a program is 
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used to determine or predict a sequence of e·,ents. Exactly the same is true of a com
puter processor. In any digital computer, a whole list of numbers stored in memory 
is scanned number by number, each one representing an action. Thus, the processor 
is simply a machine stepping one at a time through numbers that represent action codes. 
This is machine code. The set of numbers is the machine-code program. Notice that 
the computer only executes one action at any moment in time. The next action is taken 
only when the current one is complete. As a pure machine-code programmer (or, more 
strictly, from the point of view of this book an assembly-language programmer), the 
task is to know which numbers perform which actions and then string them together 
so some kind of sensible set of actions, known as a program, is executed. 

In case this sounds a little scary, just remember that no sane person writes more 
than a few lines of a program in numeric machine code. If you were to do so, you'd 
need a list of every numerical action executable by any specific manufacturer's proces
sor. This is by no means impossible, but to write a whole program, you'd need to look 
up and find the number that performed each action required in your program-a pain
fully long and error-prone process. 

This description of machine-code programming is intended to illustrate the most 
primitive level of programming of any processor on any computer. If you've not been 
put off so far, you'll be pleased to know that the worst is over-things only improve 
from here on in. 

A few definitions are in order at this point so that everyone knows what is being 
referred to as I go along. 

The set of numbers representing every single action capable of being executed by 
a processor is called its instruction set. When a processor is designed, the manufac
turer will decide what the instruction set will be and this becomes a permanent feature 
of that particular model of processor. It is possible on certain expensive and sophisti
cated mainframe processors to redefine some or all of its instruction set. This is known 
as microprogramming and is beyond the scope of this book. 

Each number executed as an individual action is called an opcode (short for opera
tion code) or an instruction. 

The sequential list of opcodes or instructions that perform a single useful function 
(for example, reading a block of data from a disk or taking the square root of a num
ber) is called a routine or subroutine. (The word algorithm is often used to refer to the 
particular method used to extract such quantities as square roots.) 

The sequential list of opcodes or instructions that perform an entire task (a com
pany payroll, for example) is called a program. 

You've learned that a processor digests instructions in the form of a list of num
bers (known as a program) stored in memory. Normally, execution is sequential, mean
ing that each instruction is found at the next higher location (or address) in memory. 
Certain instructions in a processor's instruction set can, however, change this sequen
tial process. For instance, a processor might be plodding step by step (albeit at light
ning speed) through a program starting at location 1000 in memory. The next instruction 
would be taken from location 1001, the next from 1002, and so on. But if the instruc
tion at location 1003 were to say "jump to location 2000," the processor would duly 
take its next instruction from memory location 2000 and then go on from there. (Loca
tions and addresses are numbers that refer to the particular memory cell being addressed.) 
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-----------------------------------------------------------

This type of instruction is usually called a jump or branch instruction, for obvious reasons. 
In order to keep track of exactly where in memory the next instruction is to come 

from, all processors have a special internal register called a program counter. This points 
to the location (or, in other words, contains the address of) the next instruction to be 
executed. Thus, a jump instruction simply replaces the contents of the program counter 
with the destination of the jump. When the program counter is reloaded in this way, 
the processor continues onwards from this new address. This allows various routines 
that perform different functions to be kept separate from each other and then jumped 
to as appropriate by the program. 

The program counter is by no means the only register to be found in a processor. 
There are other registers specifically designed to help with the handling of actual num
bers by the computer. The most important of these registers is usually called the ac
cumulator. There's always some kind of accumulator in every type of processor, because 
this is the main register used in the manipulation of data. Sometimes there's more than 
one accumulator in a processor; this allows the option of handling more than one num
ber within the processor itself. In most computer processors the accumulator is referred 
to by its shortened name-the A register. A typical mnemonic (that is, an easily remem
bered form of an instruction, as explained at the end of the chapter) to load the A reg
ister might look like: 

LOA M7 

which would load the accumulator (or A register) with the number seven. What that 
seven would be used for is entirely dependent upon the program-it could be the num
ber of files in a disk's directory, for example. 

No matter how many registers are inside a computer processor, they are all able 
to hold and manipulate numbers in some way, but some registers may have special 
uses. Usually, the A register is the only one that affects a set of special bits in the proces
sor called the condition flags. Because they are no more than ordinary binary digits, 
these flags are either on or off and are used to indicate the status of the accumulator. 
For instance, the zero, or Z, flag will be set on if the accumulator contains a zero. Thus, 
you could test the A register and then jump to a new location if a previous number 
had been changed to zero. 

Some other flags you're likely to find are the sign flag, to indicate whether the ac
cumulator contains a positive or negative number, the carry flag, indicates if a carry
out was generated during an addition, and the overflow flag, which is set if a signed 
number becomes too large or small to fit in the accumulator. Remember that any reg
ister in a processor is finite in size: it has a definite number of bits that determine the 
maximum number that it can hold. 

This gives a first overview of what machine code is all about. In nearly all cases, 
to program a processor in machine code, you solicit the aid of the computer itself. You 
would use a program called an assembler. This allows you to escape the drudgery of 
having to know and use the numerical instructions used by the processor. An assem
bler allows you to use such mnemonics, as the LDA #7 opcode referred to earlier. From 
machine code, you've now arrived at assembly language. This is the subject of the next 
chapter. 
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An Introduction 
to Editor-Assemblers 

To spare creative human beings such as ourselves from the mind-numbing drudgery 
of programming in machine code, assembly language was brought into existence. This 
removes the total dependence on numbers that's been enforced so far on both the com
puter and programmer. Up to this point, the term machine code has been used to refer 
to the numeric codes used by the processor. Note that although the term machine lan
guage is often used, it doesn't really have a precise meaning-there is no halfway point 
as such between m:Ichine code and assembly language. Nevertheless, the term machine 
language is still sometimes used, perhaps as an unconscious reference to machine code 
as achieved through assembly language. 

Assembly language lets you forget all about those opcode numbers by providing 
names for each opcode instead of actual numbers. These names are kept intentionally 
short and are chosen to aid the programmer in remembering the opcodes available in 
a particular processor's instruction set. Thus, instead of having to remember the num
ber 99, for instance, as a jump instruction, you'd simply write JUMP or JMP or which
ever mnemonic is correct for that particular processor. Now you have something closer 
to a language than a set of numbers, and it's this that is referred to as assembly lan
guage. The processor itself still only understands numbers, however, so you have to 
introduce a means to translate these opcode mnemonics into the pure numerical op
codes that drive the processor. A special computer program exists for this exact pur
pose. Initially written in pure machine code by some hapless programmer, this program 
performs the translation from mnemonics to numbers automatically, quickly, and without 
errors. Such a program is called an assembler, attesting to the fact that it assembles a 
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numerical list of opcodes from a list of mnemonics. 
A program that is to be assembled is submitted in the form of line after line of 

mnemonics, which is called source code. The assembler takes the source code and churns 
out the equivalent numbers, which will perform the desired program. The computer 
has still been programmed to execute a machine-code program, but this program has 
been written in assembly language instead of pure machine code. To enter this assem
bly language program, you usually need some way of preparing, entering and storing 
the program code so that it is ready for presentation to the assembler. This is normally 
done using a program called an editor, which provides a programmer with various tools 
to ease the task of manually typing in programs that can sometimes grow to inordinate 
lengths. If you've used a word processor, you'll find an editor much the same, except 
that it encourages the input of text in tabulated columns and lacks some of the more 
typographical frills of a word processor. Many editors are included as part of the as
sembler program itself. These hybrid utilities are called, not surprisingly, editor/assem
blers. The more sophisticated assemblers, due to their large memory requirements, 
often require the use of a separate editor. 

Once a program has been entered using the editor, it can be saved as a file on tape 
or disk. This file is then input to the assembler, which generates the machine code 
back to tape or disk, or in certain cases, directly to memory. The assembler will also 
let you know what errors you made (such as using nonexistent mnemonics such as 
BUMP instead of JUMP). An assembly language program will almost always contain 
errors on the first try. 

The main function of an assembler is as a pure tool for the machine-code program
mer. This tool performs the same process you'd have to do if you wanted to put to
gether a machine-code program by hand. It's not only the mnemonics that have to be 
translated to the correct numerical instructions, but the addresses used in your pro
gram. If done by hand, you'd have to cross-reference a table of mnemonics and op
codes. Then you'd have to work out the locations of other routines, to decide where 
to direct various jumps in the code. The result of this arduous hand-assembly process 
would be a machine-code program executable by the processor. It's unlikely that it would 
be free from errors in program logic flow, however. An assembler simply automates 
the process and leaves the programmer free to concentrate on program logic rather 
than the nitty-gritty of a processor's operation. 

The lines of mnemonics that are submitted to and processed by the assembler are 
referred to as source code. The assembler churns through this to provide what is called 
object code. The object code is what is executed by the computer, although many as
semblers produce a "halfway" object code. This halfway code can be linked with other 
halfway object codes to produce a final machine-code program. The source code writ
ten by the programmer has to follow a strict set of rules so that the assembler can per
form its task correctly and unambiguously. In order to simplify things for the assembler, 
the source code is submitted one opcode per line in a known, specific format. This for
mat is very similar for all kinds of assemblers, even those for different processors, and 
usually looks something like this: 

line number label opcode address comment 
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A couple of real examples are: 

00120 
01001 

KVCTR 
LBLX 

JMP 
JMP 

KBDIP 
LBLX 

pKey scan vector 
ploop f'orever 

The line number is not required by some assemblers. If it's there at all, it's merely 
to provide a reference to that line for editing purposes. In other words, it's more for 
the editor than the assembler, although the assembler can use it in pinpointing errors. 
The editor, in this case, would be able to reference any line by its number so that lines 
could be inserted, deleted, or corrected. 

The label serves to reference the code generated at that point in the program by 
the assembler. If you wanted to jump to the opcode at a particular location, you'd label 
that opcode and jump to the label, rather than to a numerical address. That way you 
don't need to know anything about where your program will physically reside in 
memory-the assembler will do it for you. In this instance it would generate the op
code for a jump followed by the numeric address of the opcode you wanted to jump 
to. This leaves the assembler to worry about the physical addresses in the object code, 
relieving the burden on the programmer. Labels have a few rules of their own, although 
they're not very restricting. They always have to start with a nonnumeric character
most often a letter from A to Z, but sometimes a period, dollar sign, underline, or other 
special nonnumeric characters. This is required so that the assembler can distinguish 
between a label and a numeric address you might want to use. If you were to use the 
label 99, the assembler would have no way of distinguishing between the address 99 
and the label 99. If you were to use the label L99, all ambiguity would be removed. 

Labels are generally chosen, using a little common sense, to have a meaningful 
name. If you wanted to jump to a routine that scanned the keyboard until a key was 
pressed, you might want to label that routine GETKEY or something similar. It doesn't 
matter at all to the assembler, but it helps a programmer who has to read your code 
to understand the intent of any particular routine. Often that programmer will be 
yourself-assembly language is described as going "cold" after a couple of months. 
You can return to your own code after such a short time and hardly understand what 
you wrote. A sensible choice of labels can significantly help in the understanding of 
a program. 

The next field required after the label is an opcode. This is the mnemonic, which 
represents the instruction to be performed at that point. The list of mnemonics availa
ble for use by a programmer is decided upon by the manufacturer of the processor 
being programmed. The assembler being used will probably also contain a list of these 
mnemonics in its documentation. That list is the entire repertoire of instructions that 
can be understood by the processor-it represents the entire instruction set. Thus, if 
a processor can perform the particular opcode you have in mind, it will be in that list 
somewhere. Some manufacturers' mnemonics are better than others' in that they're 
easier to remember (which, after all, is the purpose of a mnemonic). For instance, LDA 
is easily remembered as "load A," whereas XTHL is less easily remembered as "ex
change top of stack with register HL." If you program more than one processor, you 
soon realize that mnemonics don't vary all that much from one type of processor to 
another. What is LDA #1 on one machine may be LD A,l on another. 
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The address field, if used, lets the opcode refer to an address in memory. This 
can be an absolute physical address or a label that was used in the label field of an
other opcode. Thus, if you wanted to load the accumulator with the contents of loca
tion 3 in memory, you'd use an absolute address of 3. If you wanted to load the 
accumulator with the contents of a memory location labeled CELL in your program, 
you'd use the label CELL. 

The address field doesn't necessarily have to contain just the address of a memory 
location; it may contain the name of another register in the processor, as in the exam
ple LDC B, in which B is a different register whose contents you want to load into reg
ister C. The address field may also consist of an immediate number, which is to be loaded 
into a register. An example of this is LDB #5, in which the number five is loaded into 
the B register. The# in this example serves to tell the assembler to generate the op
code that will load the number five immediately following the opcode into register B. 
This is as opposed to loading register B with the contents of memory cell number five. 
To do that, many assemblers require you to enclose the address (in this case location 
5) in brackets. This is called indirect addressing; it's not the number five that is needed
it's the contents of memory cell number five. In the above example in which you wanted 
the contents of CELL loaded into the accumulator, you'd write LDA (CELL). The ac
tual contents of the address field for any specific opcode will depend on the addressing 
modes available for that opcode. This will, in turn, depend on the capabilities of the 
processor being programmed. Most processors allow at least the types of addressing 
just described. These are called indirect addressing, register addressing, and immediate 
addressing. Other processors allow even more memory-addressing modes, thereby in
creasing the computing power available to the programmer. 

The final field in a line of assembly language is the comment field. This does noth
ing as far as the assembler is concerned while generating code. The comment field 
is simply skipped over and ignored. Despite this ignominious end, however, the com
ment field can be as important as the actual code itself. While labels can help in docu
menting a program, the comments exist exclusively for that purpose. Unlike labels 
however, comments don't have to be cryptic. In fact, the clearer they are and the more 
often they're used, the easier it is for a stranger to your work to read your program. 
Remember, that will include yourself within a few weeks of completing a program. 
Comments are so important that most assemblers allow you to use the whole program 
line as a comment instead of using it for an opcode. Such lines often start with an asterisk 
or some other predefined character to let the assembler know to skip the entire line. 

The layout of the fields that have been used up to now have been taken for granted. 
But how does the assembler know which field represents what? Many assemblers re
quire each field to be aligned precisely at a particular position within the line. This 
jixedjield format is inherited from the days when each line was submitted on a punched 
card. Typically, you might have to start your label in column 10 and your opcode in 
column 19. Assuming at least one space after the label, that allows a maximum label 
length of eight characters. 

Most modern assemblers allow a free-field format. This means that a field comes 
to an end when a space or tab character is encountered. Naturally, this means that a 
label or an opcode cannot contain a space or tab; these would confuse the assembler 
into assuming it had reached the end of a field. It doesn't matter how many spaces 
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or tabs occur between fields. 
Up to now, the opcode field has only contained the mnemonics in the processor's 

instruction set. However, it is possible to use the opcode field to tell the assembler 
something about how you want it to operate on your source code. The words that are 
used in the opcode field to do this are called pseudo-ops. A more accurate description 
that is used these days is assembler directive, and many currently-used assemblers re
fer to pseudo-ops by this name. A description of some of the pseudo-ops available with 
typical assemblers will give an idea of how useful they are. 

The first pseudo-op to be encountered in many programs is ORG. This is a 
mnemonic for origin and tells the assembler where the assembly language is to reside 
in memory. It literally sets the origin of the code that follows the ORG directive. For 
instance, if the first line in a program were ORG 1000, then the next machine code 
byte to be generated by the assembler would be eventually stored in memory at loca
tion 1000. The creation of an entirely separate version of the program that loaded at 
location 2000 would simply involve changing the ORG line to ORG 2000, and then reas
sembling. 

EQU is an important and often-used assembler directive. It is used to equate the 
label field with the address field. As an example, if you were writing a program that 
generated output on a video screen, you'd need to know how many text lines were avail
able for display. Various parts of your program would probably need to check this 
maximum-line value to ensure that output was kept within the number of lines in the 
display. If the program were then changed to run on a screen with a different number 
of lines, you'd have to search for every occurrence of the old number of lines and change 
it to the new number. The EQU command lets you do it with one change. If the pro
gram started with MAXLINE EQU 16, then every time MAXLINE was used, the as
sembler would replace it with 16. Then if the program had to be reassembled for a 
24-line display, that one equate would be changed to MAXLINE EQU 24. The assem
bler would then replace the occurrences of MAXLINE with 24. This is simpler for the 
programmer, but a sensible choice of label, such as MAXLINE, helps in documenting 
the program. You can use your intuition to guess what MAXLINE represents, whereas 
it would be difficult to figure out what a mysterious 16 or 24 meant. 

Many pseudo-ops (or assembler-directives) exist to help in formatting a readable 
listing. LIST ON and LIST OFF tell the assembler whether or not you want a listing 
of the program at that point. If you were working on a small portion of a large program 
of which you already had a listing, you would use LIST OFF to switch off the listing. 
LIST ON would then be placed in the program at the point where you needed the list
ing. The EJECT pseudo-op sends a form-feed to the output device (most often a line 
printer) so that subsequent lines begin at the top of a new page. This helps separate 
the routines listed and immensely improves the readability of a program. As you should 
have gathered, readability is almost as important as the code itself. 

Some pseudo-ops even allow you to control which parts of the source code will be 
assembled. Going back to the example of MAXLINE above, you might have a routine 
that is only required if MAXLINE is 16. You can have this routine automatically as
sembled or skipped over by using the IF pseudo-op and its relatives ELSE and EN
DIF. Imagine you have one routine you want assembled for a 16-line display and a 
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different one otherwise. You'd write: 

IF MAXLINE=16 

(16-line routine) 

ELSE 

<other routine> 

END IF 

If MAXLINE wasn't equated to 16 within your program, the ELSE tells the assembler 
to assemble the second routine. The ELSE is optional, and is only used if you want 
one of two mutually exclusive routines to be assembled. The ENDIF tells the assem
bler that it has come to the end of the conditional assembly portion; at this point it 
continues to assemble the source code regardless of any previously required conditions. 

The MACRO pseudo-op lets you generate whole sections of source code with a 
single word, and can save a lot of work. This can almost be used to define your own 
custom-made opcodes. Suppose you needed an opcode that multiplied the number in 
the accumulator by ten. This is unlikely to be included in the instruction set of the proces
sor, so you would resort to defining a macro. First, you would decide on the name of 
your new opcode. MULlO sounds like a reasonable choice. Then you'd have to write 
the source code that would be needed every time your program has to multiply regis
ter A by ten. The macro might look something like this: 

MUL10 MACRO ;Define name 

LOB A ;Hold r•umber in B 

ADDA A ;Add A to itself' <x2> 

ADDA A ;And again <x4> 

ADDA B ;Add original number ( >:5) 

ADDA A ;Add A to itself' <x10) 

ENDM ;Signal end of' macro 

Now, every time you would use the opcode MULlO in your source code, the assembler 
would replace it with the lines between the MACRO and ENDM pseudo-ops. In effect, 
you invented a new opcode. 

When the assembler is run, you have the choice of a listing.You might want the 
listing on the screen, on the printer, or perhaps on a disk. The screen is of limited use-
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fulness with a long program, because most of it will have scrolled off the screen before 
you've had a chance to see it. Its main use is in examining small sections of code. You'll 
need a hard-copy printout at some point so you can scan to and fro within the code 
to determine where any changes need to be made. The listing consists of the actual 
machine code generated by the assembler, plus the original source code as entered us
ing the editor. Part of an assembly-language listing looks as follows: 

0001 ORG 0 

0000 01 0002 BMORE LOA B ;B into A reg 

0001 0702 0003 ADDA M2 ;+2 

0003 180000 0004 JUMP BMORE ;loop around 

forever 

The last five columns are the same as the source code that was input to the assem
bler. The columns before these are the work of the assembler itself, and represent a 
map of the machine code that was generated. The first column is the address of the 
opcode at that line. Because an origin of zero was specified in line 0001 of the source 
code, the first opcode (01) is assembled into memory location 0000. This is the machine
code instruction of LDA B. Notice that this opcode was labeled BMORE so that the 
jump opcode that is assembled into location 0003 (not at line number 0003) is assem
bled as 18-for JUMP-followed by 0000, which represents the address BMORE. If 
any further source code followed the jump, it would be assembled into location 0006-the 
next available address in memory. 

From that example, which generated six bytes into memory, you can see the work 
done by the assembler in translating the source code contained in columns three and 
above into the machine code in column two. Column one tells you where this machine 
code is loaded into memory. A separate file would be produced containing the bytes 
in column two along with information as to where they should be loaded. It's some
times possible to have these machine-code bytes assembled directly into memory; how
ever, because many machine-code programs don't work the first time, it's wise to have 
it saved to a file, in case portions of it become overwritten. This is an unfortunate but 
favorite habit of new programs that have not yet been debugged. 

The listing comes complete with another unpopular but important set of lines. These 
contain any error messages that the assembler decides you should know about. Unfor
tunately, the messages don't point out errors in the logic of your program-they only 
point out errors in the syntax or structure of the source code. For instance, if you tried 
to use the label 99 in the label column, the assembler would report that you had used 
an illegal label. It won't stop, though; it will continue until the end of the source code 
so you have an opportunity to check out any other errors. The total number of errors 
detected is printed at the end of the listing so you can dejectedly scan the listing until 
you've caught them all. 

On some systems, it is possible to ask the assembler to stop whenever it spots an 
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error during a listing to the screen. You can then make a note of the line number, press 
a key to continue the assembly, and check your source code while the listing continues. 
This is only one of a number of options you can call for when you instruct the assem
bler to start work. If you invoked the assembler with the option -LP for example, the 
assembler would ask you for the name of the file you wanted assembled, and then it 
would output its listing to the line printer. The hyphen before LP tells the assembler 
that you're requesting an option. The full list of these options is given in the assem
bler's documentation. They'll include such things as -NL to generate no listing at all, 
and -NO to generate no object code (useful for an error-scan of the source code). To 
get the assembler to pause when an error is spotted, you might use the -WE option 
to wait on errors. These options all help you in developing your own style of writing 
and debugging programs. Generally, the more options there are available, the greater 
the versatility in using an assembler. 

The final thing that you can have generated by the assembler-and it's another 
of those options-is a cross-reference table. In a long program, this can be another in
valuable aid. When your source code has been completely assembled, the assembler 
will have generated machine code with all your references to labels within the program 
replaced by the memory address where that label's code resides. It's useful to know 
where the assembler has placed each piece of labeled code. If you use the -XR option 
when you call the assembler, you'll get a cross-reference table after the source code 
listing. This will list every label you used in your program alongside its address as re
solved by the assembler. Thus, when you add and delete lines, causing the addresses 
of labels to change, a cross-reference table will display their latest locations. 

You have a choice. If you really want to, you can hand-assemble all the bytes of 
your program into memory. If you don't make any mistakes, you'll end up with a working 
machine-code program-and probably a nasty headache. Alternatively, you can use the 
assembler that will be available for the particular processor you wish to program. Not 
only will it prevent the headache, it will dramatically increase both your productivity 
as a programmer and the reliability of your program. 

Now that you've had an overview of a typical assembler and machine code in 
general, let's step into the real world, where, at the heart of the Amiga, a processor 
awaits: the Motorola MC68000. 
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A Profile of the 68000 
At the innermost depths of the Commodore Amiga microcomputer-in fact at its very 
soul-lies the integrated circuit that provides the brainpower of the machine: the Moto
rola MC68000 microprocessor. As a microprocessor chip, it has more in common with 
minicomputers than microcomputers. It could almost be described as a millicomputer. 
The 68000 has an ancestral background that goes back to the paleolithic days of com
puting. In the beginning were the first generation of mainframe computers. These beasts 
represented the dinosaur age-they were massive and slow by today's standards. The 
processor unit took up most of the space in a large room. The use of tubes as the elec
tronic devices driving the logic circuits generated large amounts of heat, which con
sumed expensive amounts of electricity and literally required an air-conditioning plant 
to keep the thing at its proper operating temperature. Memory was comprised of tiny 
circular magnets called toroids, which were magnetized alternately clockwise or counter
clockwise to represent a zero or one. 

Then the transistor was invented. This heralded a new dynasty in computing. Now 
the arithmetic and logical processing unit could be built to fit along a wall rather than 
taking up a whole room; however, computer peripherals, such as tape drives, still re
quired tubes. Enough heat was generated to require keeping on the air-conditioning 
plant to enable the sensitive magnetic-core memory to function reliably. Meanwhile, 
the giants of the semiconductor industry were learning how to imprint transistors and 
other electronic components directly onto small squares of silicon. Now hundreds of 
transistors, diodes, and resistors could be etched onto a chip a mere one square cen
timeter in size. The building blocks of computers now came in plastic packages an inch 
long and a quarter inch wide. The third generation had arrived. This enabled the com-
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puter's central processing unit to be built into a cabinet only a few feet square. Air 
conditioning had also entered the computer age-it was now called climatic control and 
was even then required to operate these multimillion dollar beasts. 

By this time, computers had proven their worth, but they were too expensive for 
all but the biggest businesses. The power of these third-generation megaliths, how
ever, was such that they could easily deal with a number of terminals connected over 
a telephone line. Smaller businesses could afford to rent these, so computing as a tool 
at last started filtering down to the masses via engineering firms and accounting firms
in fact via anyone who used numbers. 

Meanwhile, back at the semiconductor corporations, the scientists had not been 
idle. They had increased the number of components on a chip to such a density that 
now it was possible to manufacture a processor-on-a-chip. At first, only a 4-bit proces
sor was available (compared with about 32 bits on a mainframe), but very shortly there
after, 8-bit microprocessors appeared. Although this fourth generation of computers 
was initially a lot less powerful than mainframe computers, the mass of software that 
appeared gave them a power and versatility that at last brought computing to the general 
public. 

Gradually, the 8-bit chips improved to a point where the only logical improvement 
was to increase the number of binary digits processed to 16. Presumably, the final step 
will be when a microprocessors' (micro now referring to their size, not their power) 
capabilities parallel those of a mainframe. That final step is not far off. The 68000 
represents the current state in this process of microprocessor evolution. As a chip with 
a 16-bit bus, it leapfrogs the 8-bit microprocessors. As a chip with 32-bit processing 
capability, it matches some capabilities of mainframes. With the MC68000, Motorola 
has presented an electronic machine with a power and size that would have been con
sidered impossible in the first generation of computing. This is the soul of the Amiga. 

The 68000, in spite of its power, still has to deal with simple binary numbers. It 
does not have any floating-point instructions as do many mainframes, but the software 
already written to handle such quantities on other microprocessors can easily be modi
fied, if so desired. In fact, the way the 68000 is laid out-its internal architecture
allows it to manipulate numbers like either a micro or minicomputer. Registers in the 
chip can deal with 8-bit quantities, which allows it to utilize any useful byte-oriented 
algorithms. It can also deal with words of 16 bits in length, or long words of 32 bits. 
This is the reason why the 68000 is sometimes referred to as a 32-bit chip. Actually, 
this is only true of the 68020-an upgraded version of the 68000. The 68000 gathers 
its information via a data bus of 16 bits, and it's this fact that usually determines how 
many bits a processor is judged by. Saying the 68000 is a 32-bit processor is equiva
lent to saying that the Z-80 or 8080 are 16-bit chips. (Both are capable of 16-bit arith
metic, but by consensus they are known as 8-bit chips.) 

Motorola does have an eye to the future, and using the precedent already set for 
more bits per processor, they have the 68000 available in more than one version. The 
68010 is a 68000 with a few enhancements that allow it to work in a virtual memory 
environment. The 68020 is a 68000 with a 32-bit data bus (and therefore is a true 32-bit 
processor). Finally, there's the 68008, which is a 68000 with an 8-bit bus. With a small 
sacrifice in speed, this allows for simpler interfacing with already existing 8-bit mem
ory designs. With the existence of the 68020, it's comforting to know that the knowl-
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edge acquired in learning 68000 machine code will still be valuable as 32-bit technology 
consolidates its position in the marketplace. 

The 68000 is generally regarded as having 17 internal registers for number manipu
lation. In fact, if you count the status register and the program counter, it has 19. How
ever, it's probably most accurate to say it has 15 general-purpose and four special 
registers. The 15 general-purpose registers are split into two sections: eight 32-bit data 

These 
affect 
Condition 
Codes 

These 
do not 
affect 
Condition 
Code 
Register 

Fig. 3·1. The 68000 Registers. 

16 

68000 Registers 

DO 

D2 

D4 

D6 

AO 

A2 

A4 

A6 

.L = 32 bits 

.w = 16 bi.ts 

Dl 

D3 

DS 

D7 

-
.B = & bits 
~ 

.L = 32 bits 

.w = 16 bi.ts 
.---- + LZ22224t 

AI 

A3 

AS 

User A7 

System A7 

A 7 used as Stack Pointer 

SR 

PC 

Operand 
lengths: 
.L,.W,.B 

& Data Registers 

DO -D7 

lengths: 
.L, .W 

[

Operand 

& Address 
Registers 
AO-A7 

Status Register 

Program Counter 



Data Register 
32 blts 

16 bits 
Fig. 3-2. The general layout of a data 
register. I : : : : : : : : : : : : : : : I : : : : : : : I : : : : : : : I 

a bits 

registers named DO to D7, and seven address registers named AO to A6, also 32 bits 
in length. Another address register-A7-exists as a stack pointer and has two incar
nations: the system stack pointer and the user stack pointer (more on these later). The 
68000's register architecture is shown in Fig. 3-1. Each of the data registers, DO to 
D7, bears a close resemblance to an accumulator except that with eight of them to 
manipulate, the processor's power is that much greater. The data registers have in
structions available that allow the handling of 8-, 16-, and 32-bit quantities. The 8-bit 
quantities are dealt with in bits 0 to 7 of a register, the 16-bit quantities in bits 0 to 
15, and the 32-bit quantities, of course, in the entire register (bits 0 to 31). All eight 
data registers are exactly equivalent to each other in the way they deal with numbers. 
It's just like having eight versatile 32-bit memory cells within the chip. Figure 3-2 shows 
the general layout of a data register. 

Address registers can also be regarded as eight 32-bit on-chip memory cells. They 
differ from the data registers in that they can't handle data in 8-bit bytes using a single 
instruction. Opcodes do exist, however, to handle 16- and 32-bit quantities in address 
registers. Figure 3-3 shows the general layout of an address register. As in the data 
registers, bits 0 to 15 of an address register contain word-length numbers, and bits 
0 to 31 hold long words. All17 of these registers (remember there are two A7 registers) 
can pass quantities back and forth between each other, so if you wanted, 8-bit quanti
ties could be dealt with to a limited degree within an address register by temporarily 
exchanging it with a data register. 

The program counter is not a "normal" register, because it is only used to point 
to the next instruction to be executed. Its value is only changed to cause a jump in 
order to execute code from a different area of memory. Instructions are a minimum 
of one word (that is, two bytes) in length, so the program counter will always contain 
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an even number. Within the internal structure of the 68000, the program counter ex
ists as a register 32 bits in length, although only 24 bits are physically connected to 
the outside world in order to address memory. This gives the 68000 the ability to ad
dress 224, or more than 16 million, bytes of memory. If Motorola ever decided to uti
lize the remaining eight internal bits of the program counter, the 68000 would be able 
to address a staggering 4 billion bytes. 

The status register consists of various flags and mask bits. It is illustrated in Fig. 
3-4. The status register is 16 bits in length, and is logically split into two bytes: the 
system byte and the user byte. The 68000 is always running in one of two modes: su
pervisor or user. The only difference between the two is that certain instructions can 
only be used in supervisor mode. These instructions would have a catastrophic effect 
within the computer if used carelessly, so they are restricted to use only while the proces
sor is in supervisor (sometimes called privileged) state. Bit 13 of the status register
within the system byte-is used to place the 68000 in supervisor mode. Because the 
system byte itself is only accessible while in supervisor mode, it's quite easy to write 
an operating system that restricts normal programs to the user mode, thus denying 
access to the system byte containing the supervisor bit. This makes for a safer soft
ware environment that is less likely to crash due to an inexperienced or malevolent 
user doing the wrong thing. Bit 15 of the system byte sets the processor into trace mode. 
This facility is another one of the strong points of the 68000. When in trace mode, the 
processor will execute in single-step mode, thus allowing for easier debugging of 
machine-code programs. As more time is always spent in debugging than in actually 
writing code, any options that help in debugging will save time and money in program 
development. 

Bits 8 to 10, still in the system byte, represent an interrupt mask. Any one of eight 
levels of interrupts can be set by these bits. 

The first eight bits-bits 0 to 7-of the status register are known as the user byte. 
Only bits 0 to 4 have any significance. These bits are the condition flags, which act 
in pretty much the same way as on any processor. This is how they're arranged: 

Bit 0 is the carry flag. This is set if an addition that causes a carry over from the 
most significant bit of the result is performed, or if a borrow is required during a sub
traction. Shifts and rotates can also set or reset this bit according to whether a zero 
or one is shifted into it. 

Bit 1 is the overflow bit. This is set if an addition or subtraction that causes the 
result to be too high or low to store in the register is performed on a signed quantity. 
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Bit 2 is the zero bit. It is set if the result of an arithmetic or logical operation is 
zero. It also returns the value of a bit during a bit-test instruction to see if a bit is zero 
or one. 

Bit 3 is the negative or sign bit. If an operation results in a negative quantity (that 
is, with its most significant bit set), then the negative bit is set. 

Bit 4 is the extend bit. This is simply a carry flag that is affected by fewer instruc
tions than the carry bit. It is used to allow arithmetic of any degree of precision by 
allowing any carry bits to be extended from one operand to another. 

Bits 0 to 3 of the user-status bits can be tested directly as conditions within the 
68000's branch instructions. 

The 68000 can directly access 16 megabytes of memory and has hardly any res
trictions as to dedicated memory space. Only the first 1024 bytes of memory have a 
special function, as described below. In accessing a single byte, the 68000 can use any 
address within its memory space. A word or long word can only be accessed at an even 
address. If an attempt is made to reference a word or long word at an odd-numbered 
location, an exception process, which will cause a jump through location $00000C in 
memory, will begin. When accessing a word, the lowest-addressed byte (i.e., at the 
even location) is placed into the most significant part of the register. The same is true 
for long words; this means that registers are stored and loaded bit for bit the way they 
appear in memory. This is unlike many 8-bit processors, which load word-length 
registers in byte-reversed order from their order in memory. Remember, higher order 
bytes of a register are stored in lower memory locations, but so are higher order words. 
Thus, a long word is stored in memory as shown in Fig. 3-5. A word is stored as shown 
in Fig. 3-6. Finally, a byte is stored as shown in Fig. 3-7. This is worth remembering 
when long words might need to be accessed byte by byte. 

As previously mentioned, the first kilobyte of memory serves as a dedicated mem
ory area. Figure 3-8 shows the layout. Not all of this area has been commandeered 
for the 68000's system use; locations 100-3FF are available as user vectors. The sys
tem vectors are split into two main parts: the trap vectors and the interrupt auto-vectors. 
Each exception vector is called by the hardware of the 68000 and allows the processor 
to deal with exceptions, such as the address error described above, which uses loca
tion $00000C. These exception vectors run from location $000008 to $00002F and al
low for the detection and subsequent processing of the following exception conditions: 

A bus error. 
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Fig. 3-5. How a long word is stored in memory. 
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Fig. 3-6. How a word is stored in memory. 

An address error. 
An illegal instruction. 
A divide by zero. 
A CHK error. 
An overflow. 
A privileged instruction violation. 
A trace after each instruction. 

bO : 

Two special traps are provided to allow for detection of opcodes beginning with 
bit patterns 1010 or 1111. This gives the facility of designing new opcodes that can 
be executed via these two trap vectors whenever the processor encounters any opcode 
starting with those bit patterns. Only four bits of the instruction word are required to 
cause one of these traps to occur, so the remaining 12 bits can be used at the discretion 
of the system programmer. These two opcode traps are often referred to as A-traps 
(for bits 1010) or F-traps (for bits 1111). 

Locations $000060 to $00007F are provided to deal automatically with the eight 
possible levels of external interrupt. Locations $000080 to $0000BF are used by TRAP 
instructions by specifying a trap number from 0 to 15. The 68000 has two main ways 
of dealing with interrupts. Before taking a look at them, it will be helpful to see what 
happens when an external device demands the attention of the microprocessor. Three 
pins on the chip are assigned to the detection of interrupts. If a pulse appears on any 
of these pins, the 68000 might allow itself to be interrupted. This is dependent upon 
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EHception Type 

0000 0 Reset: lnitinl System Stnck Pointer 
0004 1 Reset: lnitinl Progrnm Counter 
0008 2 Bus Error 
oooc 3 Address Error 
0010 4 lllegnl Instruction 
0014 5 Division by Zero 
0018 6 CHK Instruction 
001C 7 TRRPU Instruction 
0020 8 Privilege Uiolntion 
0024 9 Trnce 
0028 10 Unimplemented 1 01 0 Opcode 
002C 11 Unimplemented 1111 Opcode 
0030 12 Unnsslgned (reserved for future use) 

" . 
" . . 

005C 23 " 
0060 24 Spurious Interrupt 
0064 25 Interrupt Ruto-Uector Level 1 
0068 26 Interrupt Auto-Uector Level 2 
006C 27 Interrupt Auto-Uector Level 3 
0070 28 Interrupt Auto-Uector Level 4 
0074 29 Interrupt Auto-Uector Level 5 
0078 30 Interrupt Auto-Uector Level 6 
007C 31 Interrupt Auto-Uector Level 7 
0080 32 TRAP # 0 Instruction 
0084 33 TRAP # 1 Instruction 
0088 34 TRAP # 2 Instruction 
008C 35 TRAP # 3 Instruction 
0090 36 TRAP # 4 Instruction 
0094 37 TRAP # 5 Instruction 
0098 38 TRAP # 6 Instruction 
009C 39 TRRP #7 Instruction 
OORO 40 TRRP #8 Instruction 
OOA4 41 TRRP #9 Instruction 
OOR8 42 TRRP #10 Instruction 
OORC 43 TRRP #11 Instruction 
0080 44 TRRP #12 Instruction 
0084 45 TRRP #13 Instruction 
0088 46 TRRP #14 Instruction 
008C 47 TRRP #15 Instruction 
ooco 48 Unnssigned (reserved for future use) 

" 
" . 

OOFC 63 . 
0100 64 User EHception Uectors 

" 
" 

03FC 255 " 

Fig. 3-8. The first kilobyte of memory. 
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the three interrupt mask bits in the system half of the status word. If all three bits 
are set, it will recognize any level of interrupt from the three interrupt pins. Other
wise, the processor will only recognize a level of interrupt at or above that reflected 
in the status register. This allows a clean and simple method of prioritizing maskable 
interrupts. A nonmaskable interrupt is always recognized and dealt with by the proces
sor. (This happens if all three pins are pulsed at the same time.) No matter what the 
contents of the interrupt mask bits in the status register, such an interrupt will always 
cause the 68000 to honor the interrupt request. 

The two ways that interrupts are dealt with when they occur are refreshingly sim
ple. The first way is that the interrupting device can place a vector address (always 
0 to lK) on the address bus, causing the 68000 to jump through that address. The sec
ond method uses the interrupt auto-vectors at locations $000060 to $00007F. This can 
be requested by the interrupting device pulsing the VP A pin during the interrupt process. 

Remember that the interrupt bits are set in the system byte of the status word, 
and this can only be done while in privileged mode. The whole point of having a status 
that allows or denies privileges is to prevent an undebugged program from causing 
a system crash. In a multi-user environment (for which the 68000 is well suited, due 
to its power) such a program only has to contain a STOP instruction to arrest the whole 
system-multiple users and all. By operating in user mode, such potentially dangerous 
instructions are not allowed to be executed. Instead, they are processed as an excep
tion routine via those vectors in low memory. The operating system can then take steps 
to ignore the potential devastation and possibly issue a friendly warning message to 
the offending programmer. A master user will have a facility built into the operating 
system that allows access to the more sensitive opcodes. 

On the Amiga, supervisor mode is reserved for traps, interrupts, and special sys
tem functions. Normal programs are expected to run in user mode. A machine-code 
program could break into supervisor mode by pointing a low-memory trap vector to 
one of its routines, and then triggering that particular trap. The routine pointed to would 
then take over in supervisor mode. This is not recommended unless you are writing 
advanced system software, because the whole instruction set of the 68000-sensitive 
opcodes and all-is at your disposal. 

The trace mode of the 68000 is another of its strong points that is likely to leave 
other chip manufacturers looking on enviously. This single facility will, without exag
geration, save hundreds of thousands of dollars of program development time for de
velopers of 68000 software. The trace mode works by causing an exception to occur 
at the end of each instruction if the trace mode bit is set in the status word. At that 
moment, the program counter and status word are saved on the stack, the trace mode 
is set off (to allow the exception to be processed without itself being traced) and the 
vector at location $000024 is entered. What happens from here on is the responsibility 
of the operating system, but it can be presumed that an entrance would be made into 
a debugging routine that would allow registers and/or memory to be examined or 
changed. Then the 68000 could single-step through a machine-code program with the 
debugger offering full control. If required, even though in trace mode, the program 
could continue unhindered (but slowed down a little) until a recognized breakpoint con
dition was recognized, causing the debugger to take over. 

Notice that when the program counter and status word are saved during a trace 
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or any other exception, they are saved on the stack. Where the stack is located in mem
ory is completely arbitrary. Obviously it will have to be located somewhere safely away 
from any machine code, or else the many different kinds of items that are constantly 
saved on the stack will be saved all over the machine code. Naturally, this would cause 
a crash as soon as that portion of the program was executed. This is one reason why 
there are two stack pointers in the 68000. Only one is in use at one time, however, 
depending on whether the current operating mode is supervisor or user. Address reg
ister A7 is used as the stack pointer-one A7 is automatically used when in the privi
leged state and the other A7 comes into effect in the user mode. They are never available 
at the same time. There is no difference between the other seven address registers 
and the way that A7 is programmed or addressed. It's just that whatever value you 
place there becomes the stack pointer and will be assumed to point to a stack area, 
either by a machine-code instruction or by an incoming interrupt. The stack pointer 
is decremented and incremented automatically during a subroutine call, a return, or 
a TRAP instruction. The stack pointer always points to the next word to be used and 
works from high to low memory. It always saves to a word boundary and must contain 
an even address. 

The program counter, being two words (32 bits) long, always requires four bytes 
if saved on the stack. This is true even though the top eight bits are not used. These 
bits may be used in the future, though. There are reports that Motorola might increase 
the address space available to the 68000. This could mean the possibility of addressing 
the whole potential4 billion bytes or 2 billion words. In the meantime, though, the cur
rent generation of 68000 microprocessors don't use the upper eight bits of the pro
gram counter. So, if you copied the program counter from the stack into any 32 bit 
register, the upper eight bits could be used as private flags within your own software 
or to delineate sections of memory or whatever. If you elect to do this, remember that 
if Motorola does use those upper eight bits for addressing memory, your program will 
not work on such a machine without modification. In the meantime, until such an even
tuality occurs, all Amiga owners can program these bits at their leisure. 

The same cannot be said about the status register. The unused bits in both system 
and user bytes of this register will always be read as zero no matter what you try to 
store there by pulling a value from the stack. The user byte of the status register con
tains the usual flag bits, which will be familiar to anyone with previous machine-code 
experience. One point worth reiterating is that the condition codes are unaffected by 
any operation on the address registers. Only operations on the eight data registers will 
have any effect on the flags in the status register. 

The 68000 has been designed to be interfaced with various peripherals in the 8-bit 
Motorola 68000 family. These peripherals have been tried and tested over the years 
since the introduction of the 6800 in 197 4. Three pins on the chip: E, VPA, and VMA, 
are used to allow the 68000 to appear like a 6800 to various peripheral chips such as 
the 6821 peripheral interface adapter (PIA). Therefore, the 68000 has no problem talking 
to the outside world. Note that the 68000 has no instructions dedicated to input or out
put. All input or output is achieved through memory mapping, whereby the peripheral 
is connected to the address bus. The peripheral is then addressed and looks to the 68000 
just as if it were a memory location. 

The pinout of the 68000 is illustrated in Fig. 3-9. This information will only be of 
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D4 DS 
D3 D6 
D2 D7 
D1 DB 
DO D9 
AS D10 

UDS D 11 
LDS D12 
R/W D13 

DTACK D14 
BG DIS 

BGACK GND 
BR A23 :I Vee n A22 

CLK A21 
GND 0' Vee 

HALT co A20 
RESET 0 A19 

VMA 0 AlB 0 
E A17 

VPA A16 
BERR AIS 
IPL2 A14 
IPLI A13 
IPLO A12 
FC2 A 11 
FC1 A10 
FCO A9 
AI AB 
A2 A7 
A3 A6 
A4 AS 

Fig. 3-9. The pinout of the 68000. 

interest to those assembly-language programmers who want an idea of how the 68000 
interfaces to the outside world at the hardware level. Here is a quick rundown of the 
68000's 64 pins: 

D0-15-the data bus. These are the 16 bits that are written and read as data 
words and read as program instruction words. This bus is used as both output and in
put to the processor. 

A0-23-the address bus. This carries the address during both data and instruc-
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tion accesses and is an output only from the chip. This bus is only used as an output 
from the 68000. 

AS-Address Strobe. This lets memory or external devices know when a valid 
address exists on the address bus. It is an output signal. 

R/W-Read/Write. This lets memory or external devices know when and in 
which direction data is expected. It is an output signal. 

UDS-Upper Data Strobe. See LDS. This is an output signal. 
LDS-Lower Data Strobe. UDS and LDS determine which 8-bit half of the 

data bus is being used. Both signals will be active during a word transfer (16 bits). This 
is an output signal. 

DTACK-Data Transfer Acknowledge. This is an input to the 68000 to let 
it know that memory has read or written the data. Slow devices can thus hold the proces
sor back until they have completed their data transfer. The 68000 automatically waits 
for this signal after every read or write. This is an input signal. 

IPLO, IPLl, IPL2-Interrupt Inputs. These determine which level of inter
rupt is being requested. Theses are inputs to the 68000. 

FCO, FCl, FC2-Function Code Outputs. These determine which kind of 
bus access is currently taking place. By external decoding, these outputs can be used 
to page memory in up to four banks. Thus, a 16 megabyte 68000 could be made to 
address 64 megabytes of memory. These are output signals. 

BERR-Bus Error Input. This is used when an external device hasn't set the 
DT ACK signal within a certain time limit. Circuitry external to the 68000 will deter
mine what this time limit should be and then signal the BERR input if a time-out has 
occurred. This is an input signal. 

HALT -As an input, it stops the 68000. As an output, it indicates that the processor 
has stopped due to a fault on the address bus. This is used both as an input and output 
signal. 

RESET-This outputs a signal after a RESET instruction that can be used to reset 
external devices without resetting the 68000. As an input, it can optionally accompany 
the HALT input to provide a power-on reset. This is used both as an input and output 
signal. 

CLK-Clock. This is the square wave train of pulses that drives the 68000 and 
determines its speed. It is an input. 

BR-Bus Request. See BGACK. This is an input to the 68000. 
BG-Bus Grant. See BGACK. This is an output from the 68000. 
BGACK-Bus Grant Acknowledge. These three allow external devices that 

require direct memory access (DMA) to take control of the address and data buses from 
the processor. They are inputs to the processor. 

E-Enable. See VMA. 
VPA-Valid Peripheral Address. See VMA. 
VMA-Valid Memory Address. These three signals allow for hardware inter

facing between the 68000 and peripherals that were originally designed for use with 
the 8-bit 6800 microprocessor family. 

25 



Chapter 

I 1 0 0 0 1 0 1 I 
binCalc 

(ill) ffilli) [lli) lim (ill) 

(lliJ [ill) !WBl rn rn 
illiD rn m m m 
[H[!Jrn4mm 
oorn rn~ 

llffiiD m rn rn o 
amiD corn rn 0 
c:m rn o ttl 0 

The 68000 
Addressing Modes 

The 68000 offers the assembly-language programmer over 300 different opcode com
binations. There is no need to panic, however; of this 300 plus, only 56 separate op
code mnemonics are required, in combination with various addressing modes, to allow 
full access to the repertoire of the 68000. These mnemonics are listed in Fig. 4-1. It 
will be beneficial to take a close look at some of these opcodes to see what they can 
accomplish in a program. Before doing that, it's worth pointing out that Motorola has 
intentionally kept down the number of mnemonics specifically to help the assembly
language programmer. To remember all 56 mnemonics would be difficult enough-300 
would be asking too much. In fact, even of the 56, only between 20 to 30 are likely 
to be used on a regular basis. The most common one you'll use, without a doubt, is 
the MOVE instruction. 

MOVE is intended to be an all-encompassing opcode to be used when any kind 
of data needs to be transferred from one place to another within the computer. It doesn't 
matter if it's a transfer from register to register, memory to memory, or any combina
tion of these. MOVE, in its various forms, will perform any data transfers on the 68000. 
Before looking at a few examples, note that the MOVE instruction, as well as many 
other opcodes, needs to know not only the source and destination of a data transfer, 
but also the data length involved. Bear in mind that the 68000 can deal with data in 
lengths of 8, 16, or 32 bits, referred to as bytes, words, and long words respectively. 
When writing an assembly language program, it's necessary to let the assembler know 
which length you intend your opcode to use. This is done by appending a letter to the 
opcode mnemonic. A period delimits this length from the opcode name. Thus, MOVE 
can exist in several variants, such as MOVE.B for move byte, MOVE.W for move word, 
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Mnemonic Description Mnemonic Oescri pt ion I 
ABCO Add Binary Coded Decimal MOVEM Move Multiple I 

I 

ADO Add MOVEP Move to peripheral ' 
I 

AND logicol AND MULS Multiply (Signed) 
ASL Arithmetic Shift left MULU Multiply (Unsigned) 
ASR Arithmetic Shift Right NBCO Negate Binory Coded Oecimol 
Bee Bronch on condition NEG Negote 
BCHG Bit test ond Chonge NOP No Ope rot ion 
BCLR Bit test ond Clear NOT Logicol complement 
BRA Branch OR logicol OR 
BSET Bit test ond Set PEA Push Effective Address 
BSR Branch to Subroutine RESET Reset 
BTST Bit Test ROL Rotote Left 
CHK Check oqoi nst bounds ROR Rotote Right 
CLR Cleor ROXL Rotote Left through Extend 
CMP Compore ROXR Rotote Right through Extend 
OBcc Decrement ond Bronch RTE Return from Exception 

Condit ionoll y RTS Return from subroutine 
OIVS Divide (Signed) RTR Return ond Restore 
OIVU Divide {Unsigned) SBCO Subtroct Binory Coded Oecim61 
EOR Exclusive OR Sec Set conditlonolly 
EXG Exchonge registers STOP Stop 
EXT Extend sign SUB Subtr6ct 
...IMP Jump SWAP Swop doto register holves 
JSR Jump to subroutine TAS Test bit ond Set 
LEA Lood effective 6ddress TRAP Trop exception 
LINK Unk subroutine TRAPV Trop if overflow 
LSL logicol Shift Left TST Test doto 
LSR Logicol Shift Right UNLK Un I ink subroutine 
MOVE Move dato 

~ Fig. 4-1. The 68000 instruction set. 



and MOVE.L for move long word. This is one of the reasons why those 56 mnemonics 
expand to over 300. 

If you leave out the .B, .W, or .L suffix, the assembler will assume a default of 
.W, or a word-length operation, as the norm. Be careful, though-leaving off the suffix 
makes it less obvious what you mean in a program. By placing the qualifier after every 
opcode, not only is your meaning absolutely obvious, but it's an extra step towards 
a well-documented program. 

The layout of the MOVE opcode is simple. In the operand portion of the opcode, 
you just specify a source and a destination separated by a comma. For instance, to trans
fer a byte from data register 0 to data register 1, you'd use: 

MOVE.B 00,01 

This reads exactly as it performs-"move byte data register zero to data register one." 
Note that this is a byte-transfer operation; only bits 0 to 7 of data register 1 will be 
affected. Bytes 8 to 31 are left unaltered. Similarly, the instruction: 

MOVE.W A1,A2 

or, if you insist on leaving out the suffix: 

MOVE A 1 , A~! 

will move a word from bits 0 to 15 of address register 1 to address register 2 without 
affecting bits 16 to 31. Note that you can't move byte lengths when using address 
registers. A long word of 32 bits is manipulated with MOVE.L as in: 

MOVE.L A6,DO 

which would move the entire 32 bits of address register six to data register zero. 
Before you delve any further into the numerous variations of the MOVE instruc

tion, along with the rest of the instruction set, you need to know about the addressing 
modes of the 68000. To fully understand what the opcodes are doing, you need to know 
what they are doing it to. The address mode of an opcode is what specifies this. 

There are 14 addressing modes available on the 68000, but this should be no more 
confusing than those 300 plus opcodes. The 14 modes are in six groups, and of these, 
only two are used to address memory that is likely to contain data of relevance to your 
program. These are the six groups as they'll be described in this chapter: 
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Immediate 
Absolute 
Address register indirect 
Program counter relative 
Implied 



Of these, all except implied addressing have variations that account for the 14 modes 
in total. Wherever possible, the addressing modes are illustrated using MOVE opcodes. 

REGISTER-DIRECT ADDRESSING 
You've already seen register-direct addressing in the examples of the MOVE in

structions given so far. As its name implies, any instruction that's performed using 
register-direct addressing addresses data directly in one of the registers. Any of the 
16 data or address registers may be addressed in this mode (DO to D7 and AO to 
A7-these are generally referred to as Dn or An, where n is the register number). 
Remember that it's illegal to address any address register with a byte-length operand 
(those with suffix .B). An example of register-direct addressing is: 

MOVE.W AO,DO 

IMMEDIATE ADDRESSING 
The immediate addressing mode uses a value within the immediate opcode as the 

source operand. In other words, the machine code for the instruction will include a 
constant that is to be used in the actual operation. An immediate operand is specified 
by prefacing it with the# sign. To load data register 1 with a byte value of 100, you'd 
write: 

MOVE.B tt100,D1 

There is a variant of immediate addressing called quick immediate. This allows a 
smaller constant to be loaded more quickly than in the normal immediate mode. Also, 
quick immediate addressing allows this small value to be stored within the opcode it
self, rather than in the bytes immediately afterwards. Thus, space is saved as well as 
time. The format of this variant is: 

I'IOVEO 

This would load the number 5 into data register 2. The value is always taken to be 
a word length (by extending it), and is limited to the range one to eight. 

ABSOLUTE ADDRESSING 
The absolute addressing mode occurs in two forms: absolute short and absolute 

long. As its name implies, absolute addressing allows memory to be accessed at an 
absolute (or fixed) location. Because the memory space of the 68000 is 16 megabytes 
and requires 24 bits to address it, the 16-bit word version of this mode is sign-extended 
by carrying bit 15 of the operand into bits 16 to 31. Thus, the absolute short version 
can only be used to access the first 32 kilobytes or the last 32 kilobytes of memory. 
If you wanted to load the 32-bit value stored in location FFFFOO, you could use either 
the long or the short form. The absolute long version would look something like: 

$FFFFOO,A1 
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The assembler itself will choose which form to use. Normally, it tries to use the abso
lute short form, but you can specifically tell it to use absolute long addressing by using 
a pseudo-op in the source code prior to the relevant opcode. ORG.L tells the assem
bler to use absolute long form in any absolute memory references, whereas ORG tells 
it to try to use absolute short addressing if the operand is within the 32K at each end 
of memory (as in the above example). 

ADDRESS-REGISTER INDIRECT ADDRESSING 
The address register indirect addressing mode is the most powerful of the addressing 

modes available on the 68000 and includes five variants: 

Register indirect 
Register indirect with postincrement 
Register indirect with predecrement 
Register indirect with displacement 
Register indirect with displacement and index 

Each of these modes can be used to specify either the source or destination operand. 
All register indirect modes can only be used with address registers specifying the in
direct address; data registers cannot be used for this purpose. If address register A7 
is used, take care to leave its value as an even number at all times. Its use as a system 
stack pointer requires this to be so. Failure to observe this will cause a bus error to occur. 

The Register Indirect Addressing Mode. The register indirect addressing 
mode uses whichever address register you want as a pointer to the memory location 
in question. If A5 contained 1000, the instruction: 

MOVE.L <A5>,DO 

would transfer 32 bits from memory location 1000 into data register 0. Notice that this 
would actually access bytes 1000, 1001, 1002, and 1003. This is the plain and simplest 
version of register-direct-using an address register to indirectly point to a memory 
location. The syntax of any address using register indirect is (An) where An is AO to A7. 

The Register Indirect with Postincrement Addressing Mode. This is only 
one step further than regular register indirect. Once again, an address register is used 
to point at a location in memory; however, as soon as the data at that location has been 
accessed, the address register being used will be incremented to point at the following 
item of data. This address register will have either a one, two, or four added to its 
previous contents. The actual amount of increment is decided by the type of data ac
cessed before the increment is done. Accessing a byte adds one, accessing a word adds 
two, and accessing a long word adds four to the register. This is where A7-the stack 
pointer-once again behaves differently from the other registers. Because it must al
ways contain an even value, it is never incremented by one after a postincrement. If 
a byte is accessed using both the stack pointer and postincrement addressing, A7 will 
be incremented by two rather than one in order to keep it an even number. A typical 
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syntax for address register indirect with postincrement is: 

MOVE.W D4,<A3)+ 

which would move a word from data register 4 to wherever address register 3 was 
pointing to, followed by an addition of two to address register 3. Remember that the 
incrementing is done after the memory access, just as the word postincrement implies. 
To move a byte from one list to another, you could use two address registers, as in: 

MOVE.B (Al>+,<A2)+ 

which would copy the byte pointed to by Al to the location pointed at by A2 and then 
add one to both registers. 

The form is (An)+ where An is AO to A7. 
The Register Indirect with Predecrement Addressing Mode. This acts 

just like postincrement except that the specified address register is decremented by 
the appropriate amount and it's done before the memory access is made. If you wanted 
to move a long word, the pointing address register should be four more than the ad
dress required. Similarly, a predecrement access of a 16-bit word would require an ex
cess of two to be added, and a single byte, an excess of one. This addressing mode 
allows you to access lists of data that are aligned downwards in memory, like the stack. 
Once again, bear in mind that A7 will never be decremented by one; a byte access will 
decrement the stack pointer by two. An example is: 

MOVE.W tW,···<A7) 

which would push a word of zero to the stack (pointed at by A7) leaving the stack pointer 
pointing at it. 

The syntax is -(An) where n is 0 to 7. 
The Register Indirect with Displacement Addressing Mode. This address

ing mode lets you specify a displacement to be added to the address register before 
using it as an indirect pointer. The displacement is a 16-bit value that is sign-extended. 
Thus, the displacement can be any value between 32,767 and - 32,768. The displace
ment word appears in the machine code immediately after the opcode word, so this 
form of addressing requires four bytes. An example is: 

MOVE 03,100<A2) 

which would transfer a word from bits 0 to 15 of D3 into the memory location plus 
100 pointed at by A2. This mode is useful when the address register contains a base 
address of an ordered area of data. By specifying displacements, any data within this 
ordered area can be easily accessed. Then if a different base address is loaded into 
the address register, once more the same ordered data can be accessed without chang
ing the code to do it. Just changing the address register allows this access to a new 
data area. 
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The syntax of this addressing mode is d(An) where d is the displacement, and An 
is AO to A7. 

The Register Indirect with Displacement and Index Addressing. This 
is similar to register indirect with displacement, except that a displacement of only 
eight bits is allowed, and an additional register can be specified; this register is added 
to the address register and displacement before the final address is arrived at. This 
is the most powerful addressing mode of the 68000, because a single address is being 
computed from three separate elements: the address register, a displacement of -128 
to 127, and an index register. The index register can be any of the 16 data and address 
registers. Normally, a sign-extended word is used from the index register, but adding 
the .L suffix to the index register forces the use of all 32 bits. A suffix of .W forces 
the default of 16 bits with sign-extension to be used. Using the appropriate suffix in 
all cases clears up any ambiguity and is preferred. 

Register indirect with displacement and index allows for easy access of data within 
tables. In most cases, the displacement will be zero if you're accessing a simple se
quential list of numbers. By specifying the table address in the address register, you 
can use the index register to provide an offset within the table. You can change to an
other table just by changing the address register. Because the index register is treated 
as a signed number, the index can be anywhere within the range -32,768 to+ 32,767 
for a 16-bit index, or -2,147,483,648 to + 2,147,483,647 for a 32-bit index. The index 
is treated no differently from the displacement; it is simply added to the address regis
ter before computation of the final address. Apart from their possible magnitudes, the 
only difference between the displacement and the index is that the displacement re
mains constant while the index can be altered by manipulation of the index register. 
Assuming 1000 in A1 and 100 in D2 the following example: 

MOVE. 14 DD,D<A1. 1 02.L) 

would place the word from DO into 1100 (0+ 1000+ 100). The statement: 

MOVE.B D0,··1.0<A1 ,D2.L) 

would place the byte from DO into 1090 ( -10 + 1000 + 100). 
Now assume - 8 (hexadecimal FFF8) in bits 0 to 16 of D2. The following line: 

MOVE.L D0,20(A1,02.W) 

would place the long word from DO into 1012 (20 + 1000- 8). 
The syntax for the address is d(An,Ri.l) where dis a displacement of -128 to + 127, 

An is AO to A7, Ri is DO to D7 or AO to A7, and 1 is .L for a long index or .W for 
a sign-extended word-length index. Leaving out .Lor .W from the index register sets 
the assembler default to .W. The index and displacement are contained in a 16-bit word 
immediately following the opcode word. The most significant byte of this word (i.e., 
the byte immediately after the opcode) contains the index information. The least sig
nificant byte following the index byte is the 8-bit signed displacement. 
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PROGRAM-COUNTER RELATIVE ADDRESSING 
The program counter relative addressing mode uses the program counter rather 

than an address register as the base from which to calculate an address. Whenever 
you specify any address in your program, the assembler will default to this addressing 
mode. Thus, program counter relative addressing will be used whenever possible for 
program control with jump (JMP) opcodes. It's therefore possible to use an instruction 
like JMP LOCN and expect to generate a relative address that will cause the jump 
to be a constant distance from the current opcode address, rather than to an absolute 
address. The same is also true of the MOVE opcode, as you'll see in the example that 
follows. 

Program counter relative has two possible forms: one allows for a displacement 
and the other allows a displacement and an index. Both forms use the word following 
the opcode word in the same manner as address register indirect with displacement 
and optional index. The first form is displacement only. The 16-bit sign-extended word 
following the opcode is added to the program counter to form the effective address. 
The value of the program counter is the location of the word following the opcode, 
i.e., the extension word. An example is: 

MOVE.B DATA,DO 

As long as memory location DATA is within the possible displacement area, the as
sembler will generate the proper program counter relative code-otherwise it will be 
absolute. The assembler being used will always first attempt to use program counter 
relative addressing if at all possible. By avoiding absolute addresses in this way, both 
program control instructions (such as jumps) and data transfer instructions (with the 
MOVE opcode) will remain independent of their physical location in memory. In this 
way, the 68000 provides the programmer with a transparent way to write position
independent code that can be executed anywhere in memory without being altered. 

The second form of program counter relative addressing provides even more power 
by allowing an index to be used as well as a displacement. Any of the 16 registers can 
be elected to act as the index register containing either a sign-extended 16-bit index 
or a long index word of 32 bits. The displacement in the latter case is one byte in length 
and can contain a value between -128 to + 127. This mode is excellent for implementing 
jump tables in which each jump in the table contains an equal number of bytes. The 
displacement would be used to point to the start of the jump table (within 128 bytes). 
Then the address register would be multiplied by the length of each jump in the table
this would be two, four, or six bytes according to the addressing mode of the jumps 
(address register indirect, short absolute, or long absolute). At this point you would 
be pointing at the indexed jump in the table at the displacement address. The jump 
in the jump table can then direct control to the appropriate address. 

The syntax is d(An,Ri.l) where dis -128 to + 127, An is AO to A7, Ri is DO to 
D7 or AO to A7, and I is .Lor .Wand is taken to be .W if missing. 

IMPLIED ADDRESSING 
In implied addressing the 68000 uses a register whose use is implied in the execu-
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tion of a particular opcode. It is not an addressing mode that can be invoked optionally 
as can all the others. For instance, a return from a subroutine always takes the return 
address using the stack pointer, A7. The only registers that are used implicitly in this 
way are the status register (SR), the stack pointer (A7), and the program counter (PC). 
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The 68000 Instruction Set 
ABCD Add Binary Coded Decimal 

This is a specialized arithmetic instruction that adds together two bytes (and only 
bytes) containing binary-coded decimal numbers. (Each byte of BCD data contains two 
BCD digits.) 

The addition can either be done between two data registers or between two mem
ory locations. If performed on bytes in memory, only address register indirect with 
predecrement addressing can be used. This facilitates easy manipulation of multiple
precision BCD numbers. The extend bit is added along with the BCD bytes to allow 
this multiprecision data manipulation. Also note that the Zero flag is only changed if 
the result becomes non-zero. 

Therefore, both the Extend and Zero bits in the condition code register should be 
present before the operation is perform?d. The Extend bit would normally be preset 
to a zero (to prevent extension on the first addition), and the Zero bit to a one (to preset 
a zero result prior to the first addition). A MOVE #4,CCR would setup these flags cor
rectly. 

Syntax: 
or 

ABCD Dn, Dn 
ABCD -(An) , -(An) 

where On is DO to D7. 
An is AO to A7. 
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Flags affected: The Extend, Zero, and Carry flags are affected as per the result of 
the operation. The state of the negative and overflow flags is undefined. 
Instruction length: 2 bytes. 

ADD Add Binary 

Four variants of the ADD opcode also exist: 

ADDA 
ADDI 
ADDQ 
ADDX 

Add Address. 
Add Immediate. 
Add Quick. 
Add with Extend. 

These are described later. 
The ADD instruction adds the source operand to the destination operand with the 

result appearing in the destination. It's possible to add bytes, words, or long words 
with this opcode by appending .B, .W, or .L to the mnemonic. Either the source or 
destination (or both) must be a data register. The source operand can be any memory 
location or data register, and the destination operand can also be any memory location 
or data register. 

Syntax: 
or 
or 

ADD On , On 
ADD address , On 
ADD On , address 

Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all af
fected as per the result of the addition. 
Instruction length: 2, 4, or 6 bytes. 

ADDA Add Address 

This variant of the ADD instruction only differs from ADD in that an address reg
ister is specified as the destination. As an address rather than data is being manipu
lated, the condition code flags are left unaltered. Only sign-extended words or long 
words can be added. 

ADDI Add Immediate 

This variant of the ADD instruction is used to add a constant value to the destina
tion. The immediate operand can be any 8-, 16-, or 32-bit value as specified by the 
.B, .W, or .L opcode suffix. The destination cannot be an address register or a pro
gram counter relative address. 
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Syntax: 
or 

ADDI #imm , Dn 
ADDI #imm , address 

where #imm is an immediate value up to two to the power of 32. 
Dn is DO to D7. 
address is any memory addressing mode except program counter relative. 

Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all set 
as per the result of the addition. 
Instruction length: 4, 6, 8, or 10 bytes. 

ADDQ Add Quick 

This variant of the ADD instruction is used to add a small positive integer between 
one and eight to the destination. The destination can be a memory location, a data reg
ister, or an address register. If it is an address register, the condition code flags are 
unaffected and the operand length cannot be a byte. 

This operation takes the place of the increment instruction found on other 
processors. 

Syntax: 
or 

ADDQ #imm , register 
ADDQ #imm , address 

where #imm is an immediate value of 1 to 8. 
register is DO to D7 and AO to A7. 
address is any memory address mode. 

Flags affected: The Extend, Negative, Zero, Overflow and Carry flags are all set 
as per the result of the addition unless the destination is an address register. 

ADDX Add Extended 

This variant of the ADD instruction adds two numbers plus the Extend bit from 
the condition code register. This allows multiple-precision additions to be performed. 
For this reason, the Zero flag is only affected when a nonzero result is obtained. This 
means that if multiple numbers are added together using ADDX, the Zero flag will 
stay reset if any of those numbers were nonzero. 

Syntax: 
or 

ADDX Dn, Dn 
ADDX -(An) , -(An) 

where Dn is DO to D7. 
An is AO to A7. 

Instruction length: 2 bytes. 
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AND Logical And 

The Logical And opcode also has one variant: ANDI - And Immediate. 
This instruction logically ANDs bits in the source operand with the same number 

of bits in the destination operand where the result is left. The number of bits can be 
8, 16, or 32 as per the .B, .W, or .L opcode suffix. One or both operands must be a 
data register. 

Syntax: AND Dn , Dn 
AND Dn , memory 
AND memory , Dn 

ANDI Logical AND Immediate 

This instruction logically ANDs an immediate byte, word, or long word value with 
the destination. The destination address can be a data register, memory, or one of two 
special cases: the condition code register or the status register. If the destination is 
the condition code register, only a byte-length immediate value is allowed. If the desti
nation is the status register, only a word-length immediate value is allowed, and the 
processor must be in supervisor mode or a privilege violation will occur. 

Syntax: 
or 
or 

ANDI imm# , Dn or memory 
ANDI immediate 8-bit # , CCR 
ANDI immediate 16-bit # , SR (privileged). 

where Dn is DO to D7. 

Flags affected: The Overflow and Carry bits are reset, the Sign and Zero bits set 
as per result, and The Extend bit unaffected. 
Instruction length: 2 to 10 bytes. 

ASL Arithmetic Shift Left 

This instruction shifts the destination operand left by a specified number of bits. 
If you are shifting a data register, the number of bits to be shifted can be specified 
as an immediate value or as a value in another data register. The immediate value can 
be 1 to 8, whereas the data register value can be 1 to 64 (where zero acts as the 64 
count). Data registers may be shifted as 8, 16, or 32 bit quantities. Only 16-bit word 
values can be shifted in memory and then only by one bit. As shown below zeroes are 
shifted in at the right hand side of the operand. As each bit is shifted out of the left 
of an operand, it is placed in the Carry and Extend bits in the condition code register. 
If the sign of the operand changes during the shift, the overflow bit is set in the condi
tion code register. 
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------------------------------------

._ASL 0 

Syntax: ASL On, On 
ASL imm 3-bit value, On 
ASL memory (1 bit only} 

where On is DO to D7. 

Instruction length: 2, 4, or 6 bytes. 

ASR Arithmetic Shift Right 

This instruction shifts the destination operand right by a specified number of bits. 
If you are shifting a data register, the number of bits can be specified as an immediate 
value or as a value in another data register. The immediate value can specify a shift 
of 1 to 8, while the data register can specify a shift of 1 to 64 (where zero acts as the 
64 count). Data registers may be shifted as 8, 16, or 32-bit quantities. Only 16-bit word 
values can be shifted in memory and then only by one bit. Each bit shifted out of the 
right hand side of an operand is placed in the carry and extend bits in the condition 
code register. As shown below the bit shifted in at the left hand side is the current 
sign bit (the most significant bit is therefore preserved throughout the shift). 

ASR....,. 

Syntax: ASR On, On 
ASR imm 3-bit value , On 
ASR memory (1 bit only} 

where On is DO to D7. 

Instruction length: 2, 4, or 6 bytes. 

BRA Branch Always 

This instruction changes the program counter register so execution continues at 
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a different point in the program code. The destination of the jump is specified as a 
signed displacement to the program counter. This signed displacement can be an 8 
or 16-bit quantity. With 8-bit quantities, this allows branches of + 126 to -128 bytes; 
16 bit quantities can specify branches of + 32766 to - 32768. The value of the pro
gram counter when the displacement is added is taken to be the first word after the 
BRA opcode. This is the actual opcode address plus two. Normally an assembler will 
assume a 16-bit quantity as the displacement, but if an opcode suffix of .Sis appended 
to the BRA, a short 8-bit displacement will be used instead. 

Other variants of the BRA instruction allow a branch to be made only if a certain 
condition is met in the condition code register. Here are the conditional branches and 
the conditions required for the branch to occur: 

BEQ branch if equal to 
BNE branch if not equal to 
BMI branch if minus 
BCS branch if carry set 
BCC branch if carry clear 
BVS branch if overflow set 
BVC branch if overflow clear 
BHI branch if higher 
BLS branch if lower or same 
BHS branch if higher or same 
BLO branch if lower 
BGT branch if greater than 
BGE branch if greater than or equal to 
BLE branch if less than or equal 
BL T branch if less than 

The branch displacement is normally specified as a label within the program caus
ing the assembler to automatically calculate the displacement required. However, an 
absolute displacement from the program counter may be specified as in the instruction 

BRA *+8 

(which means branch to this location plus eight). 

Flags affected: none. 

BSR Branch to Subroutine 

This instruction causes control to be passed unconditionally to the specified pro
gram counter displacement as in the BRA opcode. However, before the branch is made, 
the address of the opcode following the BSR is saved on the stack so a return can later 
be made to that address to continue processing at that point. This is achieved as follows: 
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1. The 24-bit address following the opcode is stored as two words (highest word first) 
at the location pointed to by A7, the stack pointer. 

2. The stack pointer is decremented by four to protect the two-word address on the 
stack. 

3. The program counter is loaded with its new value and processing continues at the 
new address. Figure 5-1 shows the steps for a BSR.S * + 100. (Note the .S causes 
the assembler to generate code for the short branch opcode of one word in length.) 

BCHG BCLR BSET BTST 
These instructions allow the manipulation and testing of single bits. The bits are 

numbered from the right to the left starting with bit number zero. Thus a byte con
tains bits 0 to 7; a word, bits 0 to 15; and a long word, bits 0 to 31. The number of 
the bit to be tested is specified either in a data register or as an immediate value. The 
value of the bit is reflected in the Zero flag of the condition code register. This means 
that if the oit tested was a zero, the Zero flag will be set (Z = 1). Therefore the Zero 
flag is always the opposite of the bit being tested. Once the test is made and the Zero 
flag set up, then the tested bit is manipulated as follows: 

BCHG 
BCLR 
BSET 
BTST 

Syntax: 
or 

the bit is reversed. 
the bit is cleared to zero. 
the bit is set to a one. 
the bit is unchanged. 

BTST On , address 
BTST #imm , address 

where On is DO to D7. 

Flags affected: Zero flag only. 
Instruction length: 2, 4, 6, or 8 bytes. 

CHK Check Against Bounds 
This instruction checks its first operand against a data register's word contents 

(that is, bits 0 to 15). If the data register contains less than zero or greater than its 
first operand, a trap occurs. The trap causes control to be passed to location 24 in mem
ory (vector 6, hexadecimal address 18). Thus, CHK can be used to ensure that an ele
ment of an array is neither below nor above its boundaries. 

Syntax: CHK bounds , On 

where bounds is anything except an address register. 
On is DO to D7. 
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------- -----------------------·-------

Flags affected: All flags are undefined after this operation. 
Instruction length: 2 or 4 bytes. 

CLR Clear Destination to Zero 
This instruction allows a byte, a word, or a long word to be cleared to zero accord

ing to the operand suffix .B, .W, or .L. The destination can be either a data register 
or memory. Address registers cannot be cleared with the CLR instruction (Use 
MOVE.L #O,An). 

Syntax: 
or 

CLR On 
CLR address. 

where On is DO to D7. 

Flags affected: Negative, Overflow, and Carry are all set to zero, the Zero flag is 
set to one, and the Extend flag is unaffected. 
Instruction length: 2, 4, or 6 bytes. 

CMP Compare 

Three other variations of the compare instruction exist: 

CMPA 
CMPI 
CMPM 

compare address. 
compare immediate. 
compare memory. 

This instruction compares two operands and sets flags in the condition code regis
ter according to the result. Except for the Extend flag, the flags are set as if the source 
operand were subtracted from the destination. However, the result of this subtraction 
is not actually retained so the destination remains unchanged. The information about 
the comparison that is stored in the condition flags can then be acted upon by a condi
tional branch instruction. CMP may be used with byte, word, or long word source oper
ands. Note that although any addressing mode can be used to specify the source operand, 
an address register can only be used if a word or long word comparison is performed. 

Syntax: CMP address , On 

where On is DO to D7. 

CMPA Compare Address 

This variation of the CMP instruction is used to compare a source operand with 
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an address register as destination operand. Only word or long word compares are al
lowed with CMPA. If a word is used as source, it is sign-extended to 32 bits before 
the comparison is made. 

Syntax: CMPA address , An 

where address is any addressing mode. 
An is AO to A7. 

Flags affected: Same as CMP instruction. 

CMPI Compare Immediate 
This variation of the CMP instruction is used to compare a source operand con

sisting of an immediate value with either a data register or memory. The comparison 
length can be byte, word, or long word as specified by the .B, .W, or .L opcode suffix. 

Syntax: 
or 

CMPI #imm , On 
CMPI #imm , memory 

where On is DO to D7. 

Instruction length: 2, 4, 6, 8, or 10 bytes. 

CMPM Compare Memory 
This variation of the CMP opcode is used to compare sequential memory locations. 

These locations can be of type byte, word, or long word as specified by the .B, .W, 
or .L opcode suffix. To perform the sequencing automatically through memory, both 
source and destination operands must be specified using address register indirect with 
postincrement. Thus, after the compare is made, the address registers of both source 
and destination operands will have been incremented by the length of data compared. 

Syntax: CMPM (An)+ , (An)+ 

Flags affected: Same as the CMP opcode. 
Instruction length: 2 bytes. 

DBRA Decrement and Branch 
This instruction is used to control the program counter register in much the same 

way as BRA instruction is except that this allows greater power and versatility. By 
using DBRA, a specified data register is decremented and the branch made only if that 
register goes past zero. Thus, the count from a positive number will count down until 
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zero and branch one more time. This allows loops where an index of zero is the last 
element. Note that as a result of this, the value left in the register will be - 1 when 
an exit is made at the end of the loop. As an example, if eight locations were to be 
accessed, the data register specified in the DBRA instruction would be loaded with 
seven. The countdown, including the final zero, would go through eight cycles. 

The program counter register is modified as in the BRA instruction whereby a sign
extended 16-bit displacement is added to the program counter. No short 8 bit form 
is available. Only bits 0 to 15 (that is, one word) of the data register is used. The desti
nation of the branch is usually supplied as a label from which the assembler automati
cally calculates the displacement needed to branch to that label. 

Syntax: DBRA On , label 

where label is a labeled opcode in the source code. 

DBcc Decrement and Branch Conditionally 
This is a whole series of instructions that resemble the conditional versions of the 

BRA opcode. Conditional decrement and branch instructions work in a similar manner 
to the DBRA instruction except that one step is added to the execution process. 

Before the decrement is performed as in DBRA, the condition specified in the 
mnemonic is tested (in the opposite order to that suggested by the opcode name). If 
the condition is true, control drops through to the next instruction-the branch is not 
made. This is opposite to the normal branch instructions where the conditional branch 
is made if the condition is true. Thus this mnemonic might more accurately be read 
as "decrement and branch unless condition". 

Powerful loops can be constructed using the decrement and branch conditional in
struction; an exit can be made from the loop either if the data register passes zero or 
if a pretested condition is met. The following list displays the conditions available for 
testing before tht. decrement and possible branch are made. This list is similar to that 
for the BRA opcode with the addition of the F (false) and T (true) conditions, which 
specify an always false or always true precondition. Therefore a DBF (decrement, branch 
false) is always false, so it will never drop through to the following opcode. Thus, the 
branch after the decrement will always be performed. Conversely, a DBT (decrement, 
branch true) is always true, so it will always drop through and never perform the decre
ment. (This would only be likely to be of use during program development.) 

DBEQ 
DBF 
DBGE 
DBGT 
DBHI 
DBLE 
DBLS 
DBLT 

decrement, branch equal. 
decrement, branch false. (Same as DBRA.) 
decrement, branch greater than or equal. 
decrement, branch greater than. 
decrement, branch higher. 
decrement, branch less than or equal. 
decrement, branch less than or same. 
decrement, branch less than. 
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DBMI 
DBNE 
DBPL 
DBRA 
DBT 

Syntax: 

decrement, branch minus. 
decrement, branch not equal. 
decrement, branch plus. 
decrement, branch unconditionally. 
decrement, branch true. (Branch never taken.) 

DBcc Dn , label 

where cc is one of the above conditions. 
Dn =DO to D7. 
label is a label within -32766 and + 32768 bytes of the program counter. 

DIVS 
DIVU 

Divide Signed 
Divide Unsigned 

These instructions allow a 16-bit divisor to be used as a source and a 32-bit desti
nation to be specified as dividend in a divide operation. DIVS assumes both numbers 
are signed, whereas DIVU assumes both to be unsigned. The destination must be a 
data register. The source can be a memory location or another data register. There
sult is stored in the low word of the destination data register and the remainder in the 
high word of the same register. If the result will not fit in the 16 bits of the low half, 
the V (overflow) flag is set in the condition code register. It is possible that the over
flow condition can occur during the internal processing of the divide, in which case 
the Negative and Zero flags will be undefined as will be the result. Either a conditional 
branch on overflow or a TRAPV can be placed after the divide opcode to act upon 
the error. 

Another problem occurs if a divisor of zero is specified. In this case a divide-by
zero exception processing sequence is automatically initiated which causes a jump 
through memory location 20 (vector 5, hexadecimal address 14). 

Syntax: 
or 

DIVS Dn, Dn 
DIVS address , Dn 

where Dn is DO to D7. 

Flags affected: The Carry flag is always set to zero. The Zero, Overflow, and Nega
tive flags are set as per the result. The Extend flag is unaffected. 
Instruction length: 2, 4, or 6 bytes. 

EOR Logical Exclusive OR 
There is one variation of this instruction, EORI.This instruction performs a logi

cal exclusive OR of the source operand with the same number of bits in the destination 
operand where the result is left. The number of bits can be 8, 16, or 32 as specified 
by the .B, .W, or .L opcode suffix. 
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Syntax: 
or 
or 

EOR On, On 
EOR On , address 
EOR address , ON 

Flags affected: The Overflow and Carry (V and C) flags are reset. The Negative and 
Zero bits are set as per result, and the Extend bit is unaffected. 

EORI Logical Exclusive OR Immediate 
This instruction performs a logical exclusive OR on a length of byte, word, or long 

word between an immediate value and a destination. The destination can be a data 
register, memory, or one of two special cases: the condition code register or the status 
register. If the destination is the condition code register, only a byte-length immediate 
value is allowed. If the destination is the status register, only a word-length immediate 
value is allowed, and the processor must be in supervisor mode or else a privilege vio
lation will occur causing a trap through vector 8. 

Syntax: 
or 
or 
or 

EORI #imm , On 
EORI #imm , memory 
EORI #imm , CCR 
EORI #imm , SR (privileged) 

Flags affected: Same as the EOR instruction 
Instruction length: 2, 4, 6, 8, or 10 bytes. 

EXG Exchange Registers 
This instruction allows any of the 16 data and address registers to be exchanged. 

Only of type long, this always operates on the entire 32 bits of a register. The registers 
can be any combination of data and address registers. No flags are affected by this 
operation. 

Syntax: EXG reg , reg. 

where reg is DO to D7 and AO to A7. 

Flags affected: None. 
Instruction length: 2 bytes. 

EXT Extend Sign 
This instruction allows the sign bit (the most significant bit in a byte or word) to 
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be extended up to the next higher size. Thus if an opcode modifier of .W is used, the 
bit in position 7 of the lower-order byte will be extended into the rest of the word (in 
bits 8 to 15). If an opcode modifier of .L is used, the bit in position 15 of the low-order 
word will be extended into the rest of the long word (bits 16 to 31, the remainder of 
the register). If a byte value has to be sign-extended to a long word, both an EXT.W 
and an EXT.L have to be performed on the data register. 

Syntax: EXT On 

where On is DO to D7. 

Flags affected: The Negative and Zero flags set as per the result. The Overflow and 
Carry are reset to zero, and the Extend flag is unaffected. 
Instruction length: 2 bytes. 

JMP Jump 

This instruction allows execution of the program to be transferred anywhere within 
the entire addressing space of the 68000. The jump address can be specified using any 
memory addressing mode except register indirect with postincrement or predecrement. 
It should be borne in mind that an absolute address specified in a jump instruction will 
load the program counter immediately with that value. Because absolute addresses are 
not position-independent, if the program is moved in memory it has to be reassembled 
if the label is contained within the program. The JMP instruction with an absolute ad
dress is more properly used for jumps to static locations such as ROM routines. To 
keep the jump position-independent, a program-counter-relative address should be 
specified. 

Syntax: JMP address 

where address is absolute, program counter relative, or address register indirect ex
cluding (An)+ and -(An). 

Flags affected: None. 
Instruction length: 2, 4, or 6 bytes. 

JSR Jump to Subroutine 

This instruction allows control to be redirected in a similar manner to the JMP 
instruction; however, before the jump is made, the address of the following opcode 
is pushed onto the stack. (See BSR for a description of the stack save process.) Thus 
a subroutine can perform a task, and when it finishes, it can execute a special instruc
tion to return to the address saved on the stack. As far as the destination address of 
the JSR instruction is concerned, the same caveats apply as for the JMP instruction. 
Absolute addresses, even as labels inside your program, should be avoided where pos-
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sible to avoid a program which is not position-independent. Unless using such things 
as ROM routines or memory-mapped hardware locations, which have absolute ad
dresses, use program counter relative or address register indirect addressing. 

Syntax: JSR address 

where address is absolute, program-counter-relative, or address register indirect ex
cluding (An)+ and -(An). 

Flags affected: None. 
Instruction length: 2, 4, or 6 bytes. 

LEA Load Effective Address 
This instruction provides a simple way of loading any address register with the 

address resulting from nearly any addressing mode. Only two such modes are excluded 
from the list of possibilities. Due to the fact that address register indirect with postincre
ment or predecrement represent a dynamically increasing or decreasing address, these 
two modes cannot be used with LEA. But any other address, no matter how compli
cated, (including address register indirect with displacement and index) can be loaded 
into the specified address register. This saves performing the address arithmetic within 
the program. The processor will automatically take the same value as the calculated 
address-or in other words "the effective address." 

Only address registers can be used with this instruction, and the destination ad
dress register is loaded with a 32-bit long value even though the address will only be 
24 bits long. No flags are affected by the result of the address calculation. 

Syntax: LEA address , An 

whe:-e address is any memory addressing mode except postincrement and 
predecrement. 
An is AO to A7. 

Instruction length: 2, 4, or 6 bytes. 

LINK Link Subroutine 
This instruction is a specialized data area allocation opcode for use by subroutines 

that require a temporary work area that will be relinquished after use. Normally, when 
a subroutine has been entered from a JSR or BSR instruction, the return address (that 
is, the address of the instruction after the JSR or BSR) has automatically been saved 
on the stack by the processor before transferring control to the subroutine. This is part 
of the regular linkage for a subroutine call, which is automatically performed by any 
computer processor. The LINK instruction adds another automatic-linkage option af
ter control has been handed to the subroutine. 
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Assume the subroutine needs ten bytes of temporary storage in order to perform 
its function. The ideal place for this would be on the stack, which is the usual place 
for dynamic register saves during a program's operation. As the stack pointer saves 
numbers in a downward direction in memory, simply subtracting ten from the stack 
pointer register (A7) would reserve ten bytes of stack space with A7 pointing to it. 
However, A7 may not point to the ten bytes for long as other items may subsequently 
be pushed onto the stack changing A7 to point lower in memory. So ideally, another 
address register should be loaded with the contents of A7 before it was decremented 
by ten so we have a firm pointer to the stack before it is changed. This is exactly what 
the LINK instruction does. 

An address register is elected to save the current pointer to the stack in A7; this 
assigned register will become the pointer to the temporary reserved stack space. The 
stack pointer A 7 is then decremented by however many bytes are needed, but before 
being decremented, the assigned register itself is saved on the stack. This way, the 
called subroutine can perform a LINK to reserve space, knowing that it can call yet 
another subroutine, which can also perform a LINK with no registers being corrupted. 
The diagram in Fig. 5-2 shows what happens. 

Note that because ten bytes are required on the stack going downwards in mem
ory (as per normal stack practice), a negative displacement is specified in the LINK 
instruction. As the displacement is a signed 16-bit immediate value, a stack displace-
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Fig. 5-2. The steps taken when a LINK instruction is performed. 
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ment of plus or minus 32K can be specified. The address register assigned to point 
to the top of the reserved space, or stack frame, is generally known as a frame pointer 
when used in this way. Note that as this register will be used with predecrement in
structions, it initially points to one word above the frame. 

Syntax: LINK An , #imm 

where n is 0 to 6. 
#imm is plus or minus 32K. 

Flags affected: None 
Instruction length: 2 bytes 

LSL Logical Shift Left 

This instruction shifts the destination operand left by a specified number of bits. 
If you are shifting a data register, the number of bits can be specified as an immediate 
value or as a value in another data register. The immediate value can be 1 to 8, whereas 
the data register value can be 1 to 64 (where zero acts as the 64 count). Data registers 
may be shifted as 8, 16, or 32 bit quantities. Only 16-bit word values can be shifted 
in memory and then only by one bit. Each bit shifted out of the left-hand side of an 
operand is placed in the Carry and Extend bits in the condition code register. As shown 
below, the bit shifted in at the right hand side is always a zero. 

Syntax: 

~ LSL 

LSL On, On 
LSL #immediate 3-bit value , On 
LSL memory (1 bit only) 

0 

Flags affected: The Carry and Extend bits are set as per the most significant oper
and bit before the shift. The Overflow flag is reset to zero. The Negative and Zero 
flags are set as per result. 
Instruction length: 2, 4, or 6 bytes. 

LSR Logical Shift Right 

This instruction shifts the destination operand right by a specified number of bits. 
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If you are shifting a data register the number of bits can be specified as an immediate 
value or as a value in another data register. The immediate value can be 1 to 8, whereas 
the data register value can be 1 to 64 (where zero acts as the 64 count). Data registers 
may be shifted as 8, 16, or 32 bit quantities. Only 16-bit word values can be shifted 
in memory and then by only one bit. Each bit shifted out of the right hand side of an 
operand is placed in the Carry and Extend bits of the condition code register. As shown 
below, the bit shifted in the left hand side is always a zero. 

0 

Syntax: 

LSR-+ 

LSR Dn,Dn 
LSR #immediate 3-bit value , On 
LSR memory (1 bit only) 

Flags affected: The Carry and Extend bits set as per the least significant bit before 
the shift. The Overflow bit is reset to zero. The Negative and Zero flags are set as 
per result. 
Instruction length: 2, 4, or 6 bytes. 

MOVE Move Data 
This is the 68000's general purpose data-transfer instruction. Using one single op

code, data can be moved from register to register, register to memory, memory to reg
ister, and memory to memory. A few variations of the instruction exist to perform more 
specialized data transfers. These are: 

MOVEA 
MOVEM 
MOVEP 
MOVEQ 

Move Address 
Move Multiple 
Move Peripheral data 
Move Quick 

The general purpose MOVE instruction can also be used to move data to (but not 
from) the condition code register, thus explicitly setting a particular set of conditions. 
If you are in privileged (or supervisor) mode, the MOVE instruction can be used to 
move data to the status register and to or from the user stack pointer. (Privileged mode 
is not required to move data from the status register.) 

With so many potential sources and destinations of data moves, the 68000 makes 
life easier by allowing all addressing modes to be used for the source. For the destina
tion, all except program counter relative addressing modes may be used. With data 
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transfers involving memory and/or data registers, the data transfer can be made using 
8, 16, or 32 bit quantities and is specified by appending .B, .W, or .L to the MOVE 
mnemonic. If the high-order bits of a data register are not involved in the data move, 
those bits remain unaffected by the transfer. Care should be used when mixing lengths 
of operands during routines using MOVE; if a byte is moved from a location using 
MOVE.B and then stored back again using MOVE.W, it will be stored in a memory 
location one byte higher than it was fetched from. Similarly, storing it back with 
MOVE.L would store it three bytes higher than its original location. 

If the destination operand of the MOVE is the condition code register, the length 
of the source operand can only be eight bits. If the status register is involved as either 
source or destination of the move, only 16-bit transfers are allowed. The instruction 
involving the user stack pointer is the only circumstance under which the 68000 al
lows optional access to either the user or the system stack pointer. Normally, the stack 
pointer is accessed as register A 7. Whichever of the two A 7 registers is in effect de
pends on whether the processor is in supervisor or user mode. However, the supervi
sor mode may have a need to access the user stack pointer even though it would normally 
only access the system stack pointer. This is why the privileged mode is required to 
access a normally unprotected register. 

Syntax: MOVE source , destination 

where source can be any addressing mode. 
destination can be any addressing mode except program counter relative and 
immediate. Either of the above can be CCR (condition code register), SR (sta
tus register), USP (user stack pointer-privileged mode only). 

Flags affected: When the MOVE source, destination format is used, the Negative 
and Zero flags are set as per the data moved; the Overflow and Carry flags are reset 
to zero, and the Extend flag is unaffected. 

When the MOVE source,CCR and MOVE source,SR formats are used, the flags 
are set directly from the data. 

When the MOVE is done with the user stack pointer (USP) as an operand, no flags 
are affected. 
Instruction length: 2, 4, 6, 8, or 10 bytes. 

MOVEA Move Address 
This specialized version of the MOVE command is used when the destination is 

an address register. The instruction only allows transfers of 16 or 32 bits in length. 
Byte transfers are not allowed with an address register as the destination. Also note 
that unlike the normal MOVE command, no flag bits are affected. 

Syntax: MCVEA source , An 

where source is any addressing mode. 
An is AO to A7. 
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Flags affected: none. 
Instruction length: 2, 4, or 6 bytes 

MOVEM Move Multiple 
This variation of the MOVE instruction allows multiple registers to be saved and 

restored using a single operation. Any of the 16 data or address registers can be moved 
this way. At the source code level, the registers chosen to be saved or restored are 
specified to the assembler in a list separated by slashes. Thus, to save DO, D3, and 
A1, the register list would be specified as DO/D3/ Al. If a consecutive number of registers 
are included in the list, they can be identified as such by a hyphen. So to save DO, D1, 
D2, D5, and A1, the register list can be specified as D5/DO-D2/Al. Notice that the or
der of registers between slashes is unimportant; however, when the 68000 saves these 
registers, it does so in a definite order. It also retrieves them in a definite (but oppo
site) order, so that if the registers are saved on a stack, they can be pulled off in a 
typical stack-like fashion (that is, last in first out). The order in which the 68000 saves 
registers is first A7 through AO, and then D7 through DO. Then in reverse order, DO 
is restored first, and restoration continues all the way through to A7. As the registers 
are most often saved in a stack formation, normally an address register is chosen to 
point to that stack. Then a predecrement addressing mode is used to push the registers 
down onto the stack. Conversely, when registers are being restored, a postincrement 
addressing mode is used. As an example, to save two registers at a memory location 
pointed to by A3, the instruction MOVEM Dll A1,- (A3) might be used. To restore 
them at another point in a program, MOVEM (A3)+,D1/A1 would be correct. Note 
that registers can only be saved as words or long words. If they are saved as 16-bit 
words, then when they are restored, the upper half of the register is automatically sign
extended so that bit 15 fills the upper half of the register. Although less memory is 
used to save registers this way, such a loss of control of the upper 16 bits of every 
restored register may present problems unless you remain acutely aware of the possi
ble corruption of an upper register half. 

The MOVEM instruction may be used with addressing modes other than predecre
ment and postincrement. By specifying other addressing modes as the source or desti
nation of the multiple transfer, registers can be saved and restored in ascending locations 
in memory. The same register order is used, but they will not be stacked in a last in, 
first out order. Note that no flags are affected by this operation. Thus a subroutine 
can affect the condition code register, restore multiple registers with MOVEM, and 
return with the condition code register still intact. 

Syntax: 
or 
or 
or 

MOVEM register list , destination address 
MOVEM source address , register list 
MOVEM register list , -(An) 
MOVEM (An)+ , register list. 

Flags affected: none. 
Instruction length: 4 bytes with predecrement or postincrement; 4, 6, or 8 bytes 
with other addressing modes. 
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MOVEP Move Peripheral Data 
This variation of the MOVE instruction is used to transfer data between the 68000 

and certain peripherals. As input and output on the 68000 is memory-mapped, certain 
addresses will not actually be memory at all but will instead be external devices. The 
68000 has a special design to allow it to use the many hardware interfaces that exist 
for 8-bit microprocessors, in particular, the 6800. What this means to the programmer 
is that if a peripheral is interfaced to the 68000 and is normally addressed at consecu
tive addresses on an 8-bit microprocessor, it will be addressed at every other address 
on the 68000 due to the design of its peripheral hardware bus. Thus the MOVEP in
struction was included to address such peripherals. A long word (four bytes) of data 
from a data register can be transferred high byte first to every alternate memory 
(peripheral) address with a single MOVEP to the first address. 

This also works the other way round in that every other word will be addressed 
starting with the source address specified in the MOVEP instruction. Only word or 
long word transfers are allowed. (A normal MOVE would be used for a single byte.) 
The only addressing mode allowed to specify the memory location is address register 
indirect with displacement, and only a data register can be used as the other operand. 

Syntax: 
or 

MOVEP On , disp(An) 
MOVEP disp(An) , On 

where On is DO to D7. 
disp is a 16-bit displacement. 
An is AO to A7. 

Flags affected: none. 
Instruction length: 4 bytes. 

MOVEQ Move Quick 
This variation on the MOVE instruction allows the quick loading of a data register 

with an immediate value. The MOVEQ variant works like a MOVE immediate value 
to data register except that MOVEQ is faster and only takes up two bytes in memory. 
The immediate value that is moved into a data register can only be in the range - 128 
to + 127. This value is sign-extended into the entire 32 bits of the data register, so 
it is always of type long despite the small immediate value. As this instruction works 
so fast, it is quicker to clear a data register with a 

MOVEQ #O,On 

than to use a 

CLR On. 
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MOVEQ cannot, however, be used with address registers (or numbers larger than eight 
bits). 

Syntax: MOVEQ #imm,On 

where #imm is an immediate 8-bit signed value. 
On is DO to D7. 

Flags affected: The Negative and Zero flags are set as per the immediate value; the 
Overflow and Carry flags are reset to zero, and the Extend flag is unaffected. 
Instruction Length: 2 bytes. 

MULS 
MULU 

Multiply Signed 
Multiply Unsigned 

These instructions allow a multiplication to take place between a 16-bit source oper
and and the low order 16 bits of a data register. MULS assumes both numbers are 
signed, whereas MULU assumes both to be unsigned. The source can be a word from 
any memory location or the low-order 16 bits of a data register. The destination has 
to be a data register. The result is stored as a 32-bit signed or unsigned value in the 
destination register. The Negative flag in the condition code register is affected whether 
or not the operands are signed, and reflects the most significant bit of the result. 

Syntax: 
or 

MULS On, On 
MULS address , On 

where On is DO to D7. 
address is any addressing mode. 

Flags affected: The Negative and Zero flags set as per result. The Overflow and 
Carry are reset to zero. The Extend flag is unaffected. 
Instruction length: 2, 4, or 6 bytes. 

NBCD Negate Binary Coded Decimal 
This specialized arithmetic instruction allows a single byte containing two binary 

coded decimal digits to be negated. The byte can be contained in the low portion of 
a data register or in memory. If the number is in memory, any memory addressing 
mode except program counter relative may be used. If the number is in a data register, 
bits 8 to 31 are not affected. 

Syntax: 
or 

56 

NBCO On 
NBCO address 



where On is DO to D7. 

Flags affected: The Negative flag is undefined. The Zero flag is set as per contents 
of register. The Overflow flag is undefined. Carry and Extend are set as per result 
of operation. 
Instruction length: 2, 4, or 6 bytes. 

NEG Negate Binary 
NEGX Negate with Extend 

This instruction negates its operand. The result is the same as if the operand were 
subtracted from zero. The operand may be 8, 16, or 32 bits long as specified by the 
.B, .W, or .L mnemonic suffix. All flags are affected by this operation. A variation of 
this instruction exists to facilitate the manipulation of multiple-precision quantities where 
data is handled in segments. This is achieved by using the Extend flag as set or reset 
from a previous arithmetic operation. The NEGX instruction works by subtracting its 
operand from zero then subtracting the Extend bit. All flags are affected by the result 
of the NEGX operation, but the Zero flag is only changed if the result becomes non
zero thus reflecting the nonzero state of a segmented number. For this reason, the Zero 
flag should be reset before performing code involving multiple use of NEGX. 

Syntax: 
or 

NEG On 
NEG address 

where On is DO to D7. 
address is any memory addressing mode except program counter relative. 

Flags affected: all. 
Instruction length: 2, 4, or 6 bytes. 

NOP No operation 
This instruction is a do-nothing opcode. It is used during program development 

to leave room in a section of code. This space can be patched with machine-code in
structions as necessary during debugging to test new routines within a previously written 
section of code. Alternatively, pieces of code can be deleted at the machine code level 
by substituting NOP instructions for the instructions and operands. 

Syntax: NOP 

Flags affected: none 
Instruction length: 2 bytes. 
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NOT Logical NOT (One's Complement) 
This instruction takes its operand and simply inverts all of its bits. (Each one-bit 

becomes zero and each zero-bit becomes one.) The operand can be either in a data reg
ister or memory and can be 8, 16, or 32 bits in length as per the .B, .W, or .L operand 
suffix. 

Syntax: 
or 

NOT On 
NOT address 

where On is DO to D7. 
address is any memory addressing mode except program counter relative. 

Flags affected: The Negative and Zero flags set as per result. The Overflow and 
Carry flags are reset to zero. The Extend flag is unaffected. 
Instruction length: 2, 4, or 6 bytes. 

OR Logical OR 
A single variant exists: 

ORI- Or Immediate 

The OR opcode performs a logical OR operation. A number of bits in the source oper
and are ORed with the same number of bits in the destination operand where the re
sult is left. The number of bits can be 8, 16, or 32 as per the .B, .W, or .L opcode suffix. 
One or both operands must be a data register. 

Syntax: 
or 
or 

OR On, On 
OR On , address 
OR address , On 

where On is DO to D7. 
address is any memory addressing mode with the proviso that program counter 
relative may not be used as destination. 

Flags affected: The Negative and Zero flags are affected as per result. The Over
flow and Carry flags is reset to zero. The Extend flag is unaffected. 

ORI Logical OR Immediate 
This instruction logically ORs a byte, word, or long word immediate value with 

the destination. The destination address can be a data register, memory, or one of two 
special cases: the condition code register and the status register. If the destination is 
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the condition code register, only a byte-length immediate value is allowed. If the desti
nation is the status register, only a word-length immediate value is allowed, and the 
processor must be in supervisor mode or else a privilege violation will occur. 

Syntax: 
or 
or 
or 

ORI imm#, On 
ORI imm# , address 
ORI immediate 8-bit # , CCR 
ORI immediate 16-bit # , SR (privileged). 

Flags affected: The Overflow and Carry bits are reset. The Sign and Zero bits are 
set as per the result. The Extend bit is unaffected. 
Instruction length: 2, 4, 6, 8, or 10 bytes. 

PEA Push Effective Address 
This instruction takes the effective address of its operand and pushes it onto the 

stack as pointed to by the stack pointer A 7. The operand can be nearly any addressing 
mode and is represented as a 32-bit long word. Only two addressing modes are ex
cluded from the list of possibilities. Due to the fact that address register indirect with 
postincrement or predecrement represent a dynamically increasing or decreasing ad
dress, these two modes cannot be used with PEA. But any other address, no matter 
how complicated, (including address register indirect with displacement and index) can 
be pushed onto the stack. This saves performing the address arithmetic within the pro
gram. The processor will automatically push the same value as the calculated address-in 
other words, "the effective address." The destination address on the stack is loaded 
with a 32-bit long value even though the address will only be 24 bits long. No flags 
are affected by the result of the address calculation. 

Syntax: PEA address 

where address is any memory addressing mode except postincrement and 
predecrement. 

Flags affected: none. 
Instruction length: 2, 4, or 6 bytes. 

RESET Reset External Devices 
This instruction sends out a pulse from the RESET pin of the 68000. It is normally 

used when a system is first powered up to reset all devices to a known state. It is only 
likely to be used after that if a hardware fault-condition develops. Because it is such 
a powerful opcode, it is restricted to use in supervisor mode only. 

Syntax: RESET 
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Flags affected: none. 
Instruction length: 2 bytes. 

ROL Rotate Left 
ROXL Rotate Extended Left 

These two instructions both rotate the destination operand left by a specified number 
of bits. If you are rotating a data register, the number of bits can be specified as an 
immediate value or as a value in another data register. The immediate value can be 
1 to 8, whereas the data register value can be 1 to 64 (where zero acts as the 64 count). 
Data registers may be rotated as 8, 16, or 32 bit quantities. Only 16-bit word values 
can be rotated in memory and then by only one bit. As shown in Fig. 5-3, each bit ro
tated out of the left hand side of the operand is placed in the Carry bit of the condition 
code register, and in the case of ROXL, also in the Extend bit. The bit rotated in at 
the right is the most significant bit for ROL or the Extend bit for ROXL. Thus, one 
more bit is involved in the ROXL rotate than in the ROL rotate. Note that ROL does 
not affect the Extend flag in the condition code register. 

Syntax: 
or 
or 

ROL On, On 
ROL #imm, On 
ROL address. 

where On is DO to D7. 
# imm is an immediate value from 1 to 8. 
address is any memory addressing mode except program counter relative. 

Flags affected: The Negative flag is set as per most significant bit before the rotate. 
The Zero flag is set as per resultant operand. The Overflow flag is reset to zero. The 

4-- ROL 

4-- ROXL 

Fig. 5-3. The functions of the ROL and ROXL instructions. 
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ROR __,. 

ROXR-. 

Fig. 5-4. The functions of the ROR and ROXR instructions. 

Extend flag is unaffected by ROL, but contains the previous most significant bit for 
ROXL. 
Instruction length: 2, 4, or 6 bytes. 

ROR Rotate Right 
ROXR Rotate Extended Right 

These two instructions both rotate the destination operand right by a specified num
ber of bits. If you are rotating a data register, the number of bits can be specified as 
an immediate value or as a value in another data register. The immediate value can 
be 1 to 8, whereas the data register value can be 1 to 64 (where zero acts as the 64 
count). Data registers may be rotated as 8, 16, or 32 bit quantities. Only 16-bit word 
values can be rotated in memory and then by only one bit. 

As shown in Fig. 5-4, each bit rotated out of the right hand side of the operand 
is placed in the Carry bit of the condition code register and in the case of ROXR, also 
in the Extend bit. The bit rotated in at the left is the least significant bit for ROR or 
the Extend bit for ROXR. Thus, one more bit is involved in the ROXR rotate than 
in the ROR rotate. Note that ROR does not affect the Extend flag in the condition code 
register. 

Syntax: 
or 
or 

ROR On, On 
ROR #imm, On 
ROR address. 

where On is DO to D7. 
# imm is an immediate value from 1 to 8. 
address is any memory addressing mode except program counter relative. 

Flags affected: The Negative flag is set as per most significant bit before the rotate. 
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The Zero flag is set as per resultant operand. The Overflow flag is reset to zero. The 
Extend flag is unaffected by ROR, but contains previous least significant bit for ROXR. 
Instruction length: 2, 4, or 6 bytes. 

RTE 
RTR 
RTS 

Return from Exception 
Return and Restore CCR 
Return from Subroutine 

These instructions change program control by loading the program counter with 
an execution address previously saved on the stack. The most common version is RTS, 
which simply pulls the saved address from the stack, increments A7 to allow reuse 
of the stack space, and reloads the program counter. 

RTE expects to find a previously saved status register word on the stack, which 
it pulls and restores prior to reloading the program counter. As RTE accesses the priv
ileged byte of the status register, it can only be executed in supervisor mode or else 
a privilege violation trap will occur. 

RTR expects to find a previously saved condition code register word on the stack, 
which it pulls and restores prior to reloading the program counter. 

Syntax: RTS 
RTE 
RTR 

Flags affected: No flags are affected by RTS. All flags are reloaded by RTE and RTR. 
Instruction length: 2 bytes. 

SBCD Subtract Binary Coded Decimal 
This is a specialized arithmetic instruction that subtracts one byte from another 

(only bytes) when each byte contains binary coded decimal numbers. (Each byte of BCD 
data contains two BCD digits.) 

The subtraction can be performed either on two data registers or between two mem
ory locations. If performed on bytes in memory, only address register indirect with 
predecrement can be used. This facilitates easy manipulation of multiple-precision BCD 
numbers. The extend bit is subtracted along with the BCD bytes to allow this mul
tiprecision data manipulation. Also note that the Zero flag is only changed if the result 
becomes nonzero. Therefore, both the Extend and Zero bits in the condition code reg
ister should be preset before the operation is performed. The Extend bit would nor
mally be preset to a zero (to prevent extension on the first subtraction) and the Zero 
bit to a one (to signify a zero result prior to the first subtraction). A MOVE #4,CCR 
would preset these flags correctly. 
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Syntax: 
or 

SBCD Dn, Dn 
SBCD -(An) , -(An) 

Flags affected: The Zero flag is cleared if result becomes nonzero. The Carry and 
Extend flags are set if a decimal borrow is generated. The Negative and Overflow bits 
are undefined. 
Instruction length: 2 bytes. 

Sec Set from Condition Codes 
This instruction sets a single byte specified in the operand to all zeroes or all ones 

according to the condition codes. The condition codes which may be used are the same 
as for the decrement and branch opcode; that is EQ (equal to), NE (not equal to), MI 
(minus), PL (plus), CS (carry set), CC (carry clear), VS (overflow set), VC (overflow 
clear), HI (higher), LS (less than or same), HS (higher or same), LO (lower), GT (greater 
than), GE (greater than or equal to), LE (less than or equal to), LT (less than), F (false), 
and T (true). If the specified condition is true as reflected in the condition code regis
ter, the destination byte is set to all ones (hexadecimal FF). If it is not true, the desti
nation byte is set to zero. Note that ST is always true and SF is always false. 

The destination can be the low-order byte of a data register or a byte in memory. 
This instruction is of particular value in saving the status of a specific condition code. 

Syntax: 
or 

Sec Dn 
Sec address 

where Dn is DO to D7. 
address is any memory addressing mode except program counter relative. 

Flags affected: none 
Instruction length: 2, 4, or 6 bytes. 

STOP Stop processor and wait 
This is a.privileged instruction that first copies its operand (which is an immediate 

word value) into the status register and then halts the processor. The processor will 
remain in this state until it receives an interrupt that is not masked by the interrupt 
mask placed into the status register. 

Syntax: STOP #imm 

where #imm is a 16-bit word value 

Flags affected: All flags are set as per the immediate value. 
Instruction length: 4 bytes 

63 



SUB Subtract Binary 
This instruction subtracts the source operand from the destination operand, leav

ing the result in the destination. One of the operands must be a data register. Four 
variants of the SUB opcode exist: 

SUBA 
SUBI 
SUBQ 
SUBX 

Subtract Address. 
Subtract Immediate. 
Subtract Quick. 
Subtract with Extend. 

These are described later. 
The SUB instruction subtracts the source operand from the destination operand 

with the result appearing in the destination. It's possible to subtract bytes, words, or 
long words with this opcode by appending .B, .W, or .L to the mnemonic. Either the 
source or destination (or both) must be a data register. The source operand can be any 
memory location or data register, and the destination operand can also be any memory 
location or data register. 

Syntax: 
or 
or 

SUB On, On 
SUB address , On 
SUB On , address 

Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all af

fected as per the result of the subtraction. 
Instruction length: 2, 4, or 6 bytes. 

SUBA Subtract Address 
This variant of the SUB instruction differs only in that an address register is speci

fied as the destination. As an address rather than data is being manipulated, the condi
tion code flags are unaffected. Only sign-extended words or long words can be 
subtracted. 

SUBI Subtract Immediate 
This variant of the SUB instruction is used to subtract a constant value from the 

destination. The immediate operand can be any 8, 16, or 32-bit value as specified by 
the .B, .W, or .L opcode suffix. The destination cannot be an address register or a pro
gram counter relative address. 

Syntax: SUBI #imm , On 
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or SUBI #imm , address 

where #imm is an immediate value up to two to the power of 32. 
address is any memory addressing mode except program counter relative. 

Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all set 
as per the result of the subtraction. 
Instruction length: 4, 6, 8, or 10 bytes. 

SUBQ Subtract Quick 
This variant of the SUB instruction is used to subtract a small integer between 

one and eight from the destination. The destination can be a memory location, a data 
register, or an address register. If it is an address register, the condition code flags 
are unaffected and the operand length cannot be byte. 

This operation takes the place of the decrement instruction found on other 
processors. 

Syntax: 
or 

SUBQ #imm , register 
AOOQ #imm , address 

where #imm is an immediate value of 1 to 8. 
register is DO to D7 and AO to A7. 
address is any memory address mode. 

Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all set 
as per the result of the addition unless the destination is an address register. 

SUBX Subtract Extended 
This variant of the SUB instruction subtracts two numbers and the Extend bit of 

the condition code register. This allows multiple-precision subtractions to be performed. 
For this reason, the Zero flag is only affected when a nonzero result is obtained. This 
means that if multiple numbers are subtracted using SUBX, the Zero flag will stay reset 
if any of those numbers was nonzero. 

Syntax: 
or 

SUBX On, On 
SUBX -(An), -(An) 

where On is DO to D7 and SS is AO to A7. 

Instruction length: 2 bytes. 

SWAP Swap data register halves 
This instruction takes the lower 16 bits of the specified data register and swaps 
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it with the upper 16 bits. It can only be used with data registers and only operates on 
the fixed word length in each half. 

Syntax: SWAP Dn 

where Dn is DO to D7. 

Flags affected: The Negative and Zero flags are set to reflect the 32-bit result. The 
Overflow and Carry flags are reset to zero. The Extend flag is unaffected. 
Instruction length: 2 bytes. 

TAS Test and Set 
This is a highly specialized instruction that is used to test a byte in memory or 

in a data register. When the condition codes are set as per the byte's contents, bit 7 
(the most significant bit) of the byte is set to a one. This operation is achieved in an 
uninterruptible read-modify-write cycle. It is the only instruction on the 68000 that uses 
this method. Its importance lies in the fact that no interrupt can cause a read of the 
accessed byte before the operation is finished. If the operation were done in two steps, 
an interrupt could occur before the byte was changed, which would allow the inter
rupting routine to scan the byte and draw an erroneous conclusion as to its status. 

Syntax: 
or 

TAS Dn 
TAS address 

where Dn is DO to D7. 
address is any memory addressing mode except program counter relative. 

Flags affected: The Negative and Zero flags set as per the byte before modification. 
The Overflow and Carry flags are reset to zero. The Extend flag is unaffected. 
Instruction length: 2, 4, or 6 bytes. 

TRAP Software Trap 
This instruction causes a trap to occur in the same manner as if it had been caused 

by a hardware-detected condition. The processor will jump to one of the 16 special 
addresses set up in the first 1024 bytes of memory. The actual address that will be 
jumped to is determined by the operand supplied with the opcode. This will be a num
ber from 0 to 15. The software trap vectors are 32-bit addresses stored in memory 
starting at location 128. Before the specified vector is taken, the status register and 
program counter are pushed onto the stack. 

Syntax: TRAP #imm 

where #imm is an immediate value from 0 to 15. 

66 



Flags affected: none. 
Instruction length: 2 bytes. 

TRAPV Trap if Overflow 
This instruction causes a trap to occur to the address in location 28 in low memory 

if the overflow flag is set in the condition code register. Before the overflow vector 
(vector #7) is taken, the status register and program counter are pushed onto the stack 
to facilitate a return via an RTE instruction. 

Syntax: TRAPV 

Flags affected: none. 
Instruction length: 2 bytes. 

TST Test Operand 
This instruction causes the processor to scan the operand and set the condition 

code flags according to its contents. The operand can be 8, 16, or 32 bytes as specified 
in the .B, .W, or .L opcode modifier. No registers other than the condition code regis
ter are changed. The operand can be either a data register or a memory location. 

Syntax: 
or 

TST On 
TST address 

where On is DO to D7. 
address is any memory addressing mode except program counter relative. 

UNLK Unlink 
This instruction is the reverse of the LINK opcode. It takes the address in the speci

fied address register and loads the stack pointer (A7) with it. This removes any space 
allocated on the stack for temporary storage. The stack pointer then points at the previ
ous contents of the address register (the frame pointer). These contents would have 
been placed there by a previous LINK instruction. The frame pointer is automatically 
reloaded by pulling the value from the stack. Both the frame pointer and the stack pointer 
are therefore returned to their values before the last LINK. This entire operation is 
performed automatically by a single UNLK instruction. 

Syntax: UNLK An 

where An is AO to A7. 

Flags affected: none. 
Instruction length: 2 bytes. 
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The Amiga System 
The Amiga is a highly sophisticated microcomputer system. The word system implies 
a set of interconnecting hardware and software pieces, some of which don't even exist 
on other microcomputers. With the Amiga, what you have in front of you and what 
you'll be programming is a set of interconnecting parts-not just pieces of hardware 
like a keyboard, screen, and printer, but also pieces of prewritten software (such as 
the executive, disk operating system, and intuition routines), which interconnect with 
each other and the hardware. Before going any further, it's worthwhile to stand back 
and look at the definition of an Amiga, so you know exactly what it is you're intending 
to program. Given such a definition, all software writers will aim at the same goal
applications that will run on any Amiga regardless of any upgrades that come along. 
If you develop an application that will only work with a graphics tablet, you have only 
yourself to blame when nobody else can use it because they only have a standard con
figuration. 

The standard Amiga setup is defined as: 

• A main unit with a 68000 CPU running at 7.16 MHz containing a built-in 3.5 inch 
dual-sided minifloppy. 

• A detached keyboard comprised of 89 keys. 
• A two-button mouse. 
• Memory capacity of 256K Kickstart write-protected RAM and 256K of user RAM. 

The built-in disk drive has 880K of space available. 
• The video display has two resolutions. Low resolution is 320 dots wide by 200 dots 

high, each dot being any of 32 colors from a color palette of 4096. High resolution 
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is 640 dots wide by 200 dots high, each dot being one of 16 colors from a color pal
ette of 4096. Vertical resolution can be increased to 400 dots by switching the dis
play to interlaced mode. 

This is the standard Amiga setup. Any program that will work on this configura
tion will work on any Amiga. If you want to program an application that uses some
thing else, like a graphics tablet, you should make its use optional so that everyone 
can use your application even if they don't have the graphics tablet. Commodore-Amiga 
already offers a number of options, that will doubtless be augmented by the company 
itself and by third party suppliers in the near future. Current options from Commodore 
include up to three external floppy-disk drives (either 3.5 or 5.25 inch and 256K RAM 
expansion cartridge. 

With these configurations in mind, you have a solid concept of what hardware is 
definitely hooked up, and what is possibly hooked up. Once again, if everybody is design
ing software to the same ends, greater consistency is achieved. 

The sophistication of the system should not be perceived as a threat to an assembly
language programmer just starting out on the Amiga. The fact that all the intercon
necting parts are made functionally available to a programmer makes the task of pro
gramming simple. With the 68000 Development System as supplied by Commodore, 
the effort involved in designing a program is reduced to its bare minimum. If you want 
your program to have such high-level facilities as windows, you don't have to write 
code to draw rectangles and title them. Those kinds of chores have already been un
dertaken by other programmers-you simply use their routines as if they were new 
opcodes in the 68000 instruction set. This not only simplifies program design, it makes 
your program fit in with the way other Amiga applications work. Thus, someone who 
isn't familiar with your new application won't be baffled by a bewildering set of brand 
new commands or menu choices-at least, not if your program uses the same windows, 
pull-down menus, and mouse-related features used in all the other Amiga software. 
This is what the software interface is all about: what's available in the way of building 
blocks and how to use them. A closer look at the actual building blocks will follow, 
in the next chapter. In this chapter, you'll get a feel for the Amiga system in general 
as it applies to the assembly-language programmer. 

PROCESSES AND TASKS 
When a program is run on the Amiga, it is run as a process by the executive. The 

executive is itself a process that, under the normal Amiga operating environment, never 
finishes. This is because one of its main purposes is to continually share the resources 
of the computer among processes that are trying to execute. Thus, while programs 
(processes) are being run, the executive will be there overseeing their execution and 
use of the machine. It's the executive that is loaded into memory from the Kickstart 
disk when you boot up the Amiga. Once loaded, the executive (often referred to as 
exec) is protected from external interference by being placed in write-protected RAM, 
which acts as ROM high up in the Amiga's memory map. (See Fig. 6-1.) This memory 
behaves as if it were ROM because it is hardware-configured to be read and not writ
ten once it has been loaded with the contents of the Kickstart disk following power-up 
of the machine. Thus, exec is safe from accidental overwrites by any crashing pro-
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Fig. 6-1. A simplified Amiga RAM map. 
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grams. (Further references to ROM, either in this book or in Commodore documenta
tion, actually apply to this write-protected area of memory.) Apart from the inviolability 
of the executive process, using pseudo-ROM like this allows for updated versions of 
exec to be provided on a new Kickstart disk rather than having to open up the Amiga 
and replace a set of plug-in ROMs. 

Processes that run on the Amiga can be split up into separate tasks, each of which 
can be run independently to improve the performance of the computer system as a whole. 
For instance, imagine that you have two tasks in the system, and one task wants to 
read some information from a disk. While the disk is being positioned for the read, 
the other task can take over the 68000 and perform its function, thus better utilizing 
the computer. Each task has its own environment, consisting of its program code and 
special task-related system information. A task runs as if it were a stand-alone pro
gram running on an independent 68000, and it might not even be aware of the exis
tence of other tasks executing concurrently in the machine. Tasks have the option of 
communicating to each other using messages or signals. This same signal mechanism 
is used in the programs at the end of this book to detect user-selection of menus and 
gadgets. 

The Executive 
One of the main functions of the executive is to schedule the running of tasks on 

a priority basis. If one task has a higher priority than another, then the executive will 
let it have control of the 68000. If an executing task needs a resource that is currently 
in use, the executive will "steal" the 68000 from it and let the next priority task take 
over. If several tasks have the same priority, exec will allocate each one a limit called 
a time-slice and then swap between them as each limit runs out. The fact that multiple 
tasks can appear to be running at once is why the Amiga is described as a multitasking 
machine. 

Don't worry if this setup seems complicated. Until the concept feels natural, just 
program the machine as if you were the only one running a program on the system. 
For the most part, this is how programs appear to execute anyway-both from the user's 
and programmer's point of view. Because of the importance of tasks within the Am
iga, however, it's just as well to know of their existence at this stage. 

As mentioned earlier, each task has an associated chunk of memory, in addition 
to that used by its program code, containing special system information that is used 
by exec. This will contain such data as the task's priority, where it resides in memory, 
how much memory it is taking up, and whether or not it is executing. Every task in 
the system will have its own independent task-control data structure. Each structure 
will have the same format, so that the executive knows where to find data it might 
need to deal with any task. 

The software routines in the Amiga use many structures other than task-control 
data structures. For instance, one describes a window to be opened on the screen. This 
kind of structure contains information such as the window's size, its location on the 
screen, whether it can be sized, and other information appropriate to the opening of 
a window. This New Window structure, as it's called, always has the same layout, which, 
naturally enough, is why it's referred to as a structure. The use of predetermined struc
tures in memory is central to the operation of many Amiga software routines. Other 
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structures exist to describe the rendering of gadgets in windows, and the format and 
style of text-in fact, just about every manipulable object available in the Amiga soft
ware. The layout of each structure is described in the ROM Kernel Manual. You'll 
see some examples in the source code of the programs detailed in Chapters 11 and 13. 

To keep track of the many structures that can appear in memory, exec maintains 
lists of them. Each item (or node) in these lists is linked together in such a way that 
the executive can access a structure easily. Thus, if a window is closed or a task re
moved, exec searches from the start of the list, finds the appropriate structure, acts 
upon data contained in that structure (perhaps reallocating memory used by a task), 
and then deletes the structure from the list. Often lists are maintained in no particular 
order, with items simply linked chronologically as exec-related events are kept track 
of. Whenever a list is ordered in a certain way (for instance, to keep track of tasks 
in order of priority), the list is referred to as a queue. This manipulation of items within 
lists and queues helps exec to deal with a constantly changing environment involving 
tasks, interrupts, messages, and other dynamically occurring events. Software routines 
are available to help manipulate items within lists, but you're not likely to need them 
unless you decide to write system software that interfaces deep down at the level of 
the executive. 

AmigaDOS 
Above the level of executive in software terms is the Amiga Disk Operating Sys

tem, or AmigaDOS. This deals with the file system on disk and loads or saves pro
grams and files on the disk hardware. AmigaDOS uses a special subset of software, 
referred to as the TrackDisk device, to interface with the disk hardware. Thus, you 
don't have to concern yourself as a programmer with the intricacies of disk seeks, reads, 
writes, or error detection. AmigaDOS has a whole set of routines available as part of 
the building blocks mentioned earlier. This makes the job of interfacing with the disk 
simply a matter of choosing the DOS routine to perform the task you need and letting 
AmigaDOS do the "donkey work." 

Notice that AmigaDOS uses the TrackDisk software to perform disk input and out
put. It may also use various routines from within the executive while it carries out the 
functions of a disk operating system. The executive itself may schedule a different 
process if AmigaDOS becomes idle. 

MODULE HIERARCHY 
The reliance of software modules upon each other in the Amiga leads to a hierar

chy that is shown in Fig. 6-2. In this diagram, the hardware of the Amiga is shown 
at the lowest level. This includes the 68000 microprocessor, which is assigned to tasks 
by the executive and thus is shown at the next higher level. The executive needs to 
be there to run AmigaDOS which, in turn, needs to be available to run the Workbench 
or the CLI (command line interface). The CLI and Workbench are shown at nearly the 
highest level, because they rely for their operation on all the levels below. The level 
at which programming is done in this book is equal to or above that of the CLI and 
Workbench. 
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Fig. 6-2. The hierarchy among components of the Amiga system. 
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INTUITION 

As shown in the figure, at about the same level as AmigaDOS, there is a set of 
software routines that goes by the name of Intuition. This important package contains 
many of the high-level graphic routines that give the Amiga much of its distinctive per
sonality. The Intuition routines contain the code to allow your program to have win
dows, requesters, gadgets, and all the other accoutrements of a graphically driven 
software environment. By having these routines available as a set of building blocks, 
you're spared the effort of inventing code to draw and manipulate all the familiar Am
iga objects. 

THE AMIGA LIBRARIES 

While all users and programmers have the Amiga Workbench from which to work, 
applications programmers have yet another metaphorical aid-the Amiga libraries. 
These libraries consist of all the high-level routines that Commodore has documented 
and made available to software developers. Any assembly-language programmer can 
use these library routines. Many of them are contained in the Amiga's ROM area, 
whereas others are loaded into RAM when a library is opened. A jump table, which 
is an integral part of each library, contains the whereabouts of each routine contained 
within that library. 

Before you are able to use a library routine, you need to locate the base address 
of that particular library. This is provided to you when you open the library. (Further 
details of this procedure are given in the next chapter.) The jump table, containing 
actual jumps to each of the routines within the library, is located immediately below 
this base. Thus, to use a routine, you simply use a JSR opcode to a negative offset 
from the library base address. 

The Library Offset Table 
The call-by-library-offset is the kingpin around which the Amiga software inter

face works. Notice that this method eliminates the need to know exactly where the 
routines are located in memory. On other microcomputer systems, if you wish to use 
a routine in ROM, you have to know its absolute ROM address in order to use it. Ini
tially, that's no problem; you write your program using those ROM routines and every
thing works fine. Then the manufacturer changes the ROM. Your program might now 
no longer work on the machine with the new version of ROM, because your program 
uses the old locations. The only remedy would be to rewrite your software for every 
new version that was released. In the Amiga, the library offset table eliminates that 
whole scenario. If a routine is changed by Commodore, then they simply update the 
library containing that routine. 

Whenever any Amiga library is opened (new or old), each entry in its jump table 
is initialized to point to its constituent routines. Thus, your routines will always be ex
ecuted at the proper locations because the jump table is initialized by exec whenever 
a library is opened. All this is totally invisible to your program, which executes with
out having to know if it's running on the old version of ROM-or whether it's running 
in ROM at all. Another useful thing about using a library vector table (as it is also called) 
in this way is that you can change the entries to point at your own custom routines, 
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or you can even write your own libraries. This, however, is only for advanced machine
code programmers and is beyond the scope of this book. 

Interaction Among Library Routines 
Some of the higher-level library routines actually use routines from within other 

libraries, inferring a level of hierarchy and interaction among them. As an example, 
an Intuition routine that opens a window may use a routine from the graphics library 
to draw a gadget. As this suggests, the various routines available are separated into 
logically distinct libraries. For instance, most graphic functions-especially the lower 
level ones outside of Intuition-are handled by the graphics library. 

Each library provides the assembly-language programmer with tools to achieve a 
definite purpose. To fully use the facilities provided by the libraries, you need the 
documentation for each one. This is currently available in the large volume published 
on behalf of Commodore called The ROM Kernel Manual. The various software rou
tines, as referred to by their specific function names, are handled within a library specific 
to that kind of routine, such as the exec library, the math floating-point library, the 
Intuition library, and so on. Along with the appropriate function names, each routine 
is described as to its parameter requirements. Most routines need registers set up with 
appropriate values and/or addresses before being used. Many may have a value returned 
in data register dO. 

Generally, register-driven routines have values passed in data registers dO and up, 
while addresses are usually passed in registers aO and up. There are exceptions to this 
rule, however, so the documentation should always be checked. A complete list of reg
ister requirements for each library routine is given in the appendix. 

An example shows how easily a new window can be opened using a routine from 
the Intuition library: 

LEA 

LEA 

IntBase,A6 

NewWinclow,AO 

Address of Intuition library 

Address of new window 
structure 

J S R _LV 0 0 pen W i n cl ow ( A 6 ) Call library routine 

The routine named Open Window, which is part of the Intuition library, does the 
hard work. Following Amiga's conventions, the name of the routine is preceeded by 
_L VO to lessen the possibility of conflict with names within your program. All you 
have to do as an assembly-language programmer is ensure that the correct registers 
are loaded with the necessary values. In this instance, the Amiga's Intuition library 
has spared you the effort of having to write the great deal of code that would be neces
sary to draw a complete window on the screen. Of course, if you wish to write this 
kind of routine yourself, there's nothing stopping you, but you'll end up with software 
that deviates from the Amiga standards, and put yourself months behind on your project. 
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THE ADVANTAGES OF THE AMIGA SOFTWARE INTERFACE 

You can deduce from this chapter that Commodore has put a great deal of thought 
into designing the software interface for the Amiga. The years of development that 
have been used to engineer this system save you, as an assembly-language program
mer, from having to recreate that same effort. Thus, your program doesn't have to 
include things like how to draw a line or a box; it has already been done by Commo
dore and is right there in the library routines for your program to use. 

By giving machine-code programmers the choice of using the system routines, Com
modore has also encouraged a situation in which your program will share many charac
teristics of other Amiga programs. This is how they can be reasonably sure that many 
Amiga applications will have a high degree of consistency. Everybody's menus, for 
example, will work in the same basic ways, as long as everyone uses the documented 
library routines. You don't even have to worry about how you'd invent a menu from 
machine code-the weeks of work that would be involved in doing that have already 
been invested on your behalf. There is no reason, though, if you're a maverick-type 
programmer, why you can't bypass the entire operating system and program the Am
iga directly at the hardware level. If you insist on doing this, however, you'll be on 
your own, and might end up with a program only you know how to use. 

These' building blocks, then, are the method by which you let the Amiga know what 
you want to accomplish. That doesn't mean your expertise in the 68000 is wasted
quite the contrary. Your application still has to perform its uniquely required task, which 
could be as diverse as running finances for a store or controlling the operation of a 
power station. Both applications will use the same methods of calling library routines 
to achieve the same re~ults. To use each routine, you need to know the name of the 
function required to do it and the library in which it resides. Any information the func
tion needs to know to carry out your requirements also has to be supplied. Some func
tions will return a quantity or an error number if what you asked can't be achieved. 
Many functions require you to direct their operation by specifying values in data and 
address registers of the 68000. 

At this point it should be becoming clear that to remember all the potential rou
tines available to a programmer (each performing a different task) would be as impos
sible as remembering the entire set of instruction codes of the 68000. To help simplify 
the problem, each routine has been assigned a unique name that is related to the job 
it performs. For instance, to help you in forming your own menu, there is a routine 
called SetMenuStrip. Names such as these will be connected into the library by the 
linker-the program that produces an executable version of your code after the assem
bler has produced object code from your source code. Whenever you specify an exter
nal library name as a subroutine address in your program, it will be replaced by a call 
to the library function. The characters _L VO are added to the beginning of the name 
to differentiate function names from other labels in your program. 

AMIGA OBJECT DEFINITIONS 

Some final definitions might help to clear up any remaining confusion when talk
ing about the Amiga from a software development point of view. First, a file is a con
tainer of information. This can be a program, a picture, text, or whatever a user wants. 
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Other files may contain information the user doesn't even know about. Three major 
types of files are projects, tools, and drawers. Files containing tools are created by 
assembly-language programmers when writing an application program. Tools are ap
plication programs that contain code often used to manipulate files. Many tools have 
a menu bar that enables the user to see the available commands with which data can 
be manipulated. Each tool can have a window through which the user can view the 
information in a file. Windows can contain graphical objects called gadgets, which the 
user can select with the mouse to indicate a choice of some kind. Projects are the infor
mation that the user can access in a file via a tool. Most often, a project is associated 
with a principal tool, though this tool might not be the only one that can operate on 
the file. For example, an assembly-language program stored in source-code format will 
most likely be used by an assembler, but it will more often be used by an editor. 

The Workbench Environment 
There are two main environments in the Amiga from which your program may 

be launched. At the graphical level, the Workbench is the most fundamental level on 
the Amiga. It most closely approximates the operating system on other computers. Be
cause it is graphic-driven instead of textual in nature, the user can accomplish work 
by using objects on this metaphorical "workbench" rather than by commanding the 
computer using its own rigidly defined set of command words. From the Amiga Work
bench, you can throw a project in the trash rather than killing a file. 

Windows are the most useful objects you can open in an application. Through them, 
you can view any information that a tool is capable of providing. All windows have 
similar attributes: they can be moved around, expanded or contracted, and sent in front 
of or behind other windows. If the tool being used allows its windows to be changed 
in size, it's always achieved in the same way, regardless of the tool. Windows lie in 
their own plane on the screen. Whichever one has its title bar highlighted is the active 
window-this is the one that is currently being manipulated and accepts input from 
the user. If any window overlaps another, it obscures the overlapped portion from view. 
Programs can have multiple windows open almost as easily as they can have a single 
one, although care should be taken, because multiple windows tend to confuse a user. 

The CLI Environment 
At the textual level, the Command Line Interface, or CLI, is the most fundamental 

level available on the Amiga. The CLI works like a more traditional (or old-fashioned) 
operating-system interface. Actions are invoked by typing in command words that have 
to adhere to a strict set of rules or syntax. If a user types a command using the wrong 
syntax, the program to execute that command has little choice other than to abort, per
haps giving the user a hint as to why it did so. Programs that are run from the CLI 
level can use the Amiga windows and requesters, but newcomers to the Amiga are 
still likely to find the CLI much less user-friendly than the Workbench. 

As far as the programmer is concerned, it makes little difference whether the pro
gram is run from the CLI or the Workbench. If you decide that one environment or 
another suits your project best, it is possible to find out whether your program has 
been launched from the CLI or otherwise. This is demonstrated in the example pro-
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grams in Chapters 11 and 13. 
You now have a picture of the Amiga system as a whole. You have an overall pic

ture of what it is you're programming, and also a rough idea of how to do it. The next 
chapter will take a closer look at what is available from the libraries when you are us
ing the Amiga's software interface. 
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The Software 
Interface to the Amiga 

The Amiga software interface consists of a number of libraries, each of which takes 
care of work under a logically distinct heading. An application interfaces with the rou
tines in the library by supplying parameters described in the documentation for each 
routine. To be able to use any library effectively, you need to have a good idea of what 
it contains. This chapter takes a look at the contents of libraries, but doesn't delve deeply 
into the method of using them. The ROM Kernel Manual exists for this purpose. After 
reading this chapter, you'll know how the software interface is broken up and where 
to look to see if a library routine exists to accomplish something you need. 

STRUCTURES 
Before browsing through the libraries, we'll take a closer look at structures and 

how they are used in assembly-language programs. Structures are used by many rou
tines throughout the Amiga's software libraries, and a good understanding of them is 
necessary to make these library routines function properly. 

Structures are simply areas of memory of a definite size. Within this area, bytes, 
words, and long words are used to represent objects that the system needs to deal with. 
These objects will always be in the same place relative to the start of the structure. 
The location at which an object is placed within the structure is called its offset. Each 
member of a structure must be at a known offset; otherwise the routines that use them 
would have no way of knowing where a particular value is to be found. In keeping with 
the requirements of the 68000 in the Amiga, it is usual to find words and long words 
within structures aligned at an even address to prevent odd-address errors from occur-
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ring when they are accessed. This sometimes means padding with an extra byte to 
bring a structure member to an even location. 

The layout of each structure and the meanings of each member are dependent upon 
whichever library routine is being used. The programmer of each routine decides which 
items of information are likely to be passed back and forth between an application and 
the routines it uses. Once the layout of a structure has been decided, its format is fixed. 

Whenever you use a routine from the Amiga software library that uses a struc
ture, its format is explained in detail. This is so that you, as a programmer, know which 
fields in the structure have any meaning in your program. This may sound like a head
ache, but in fact it makes things very simple. An example or two will make things clearer. 

Macros and Windows 
Whenever you open a new window from within a program, you use the routine 

called OpenWindow from the Intuition library. To function properly, the OpenWin
dow routine needs an address that it expects to find in register aO. This address will 
point to a NewWindow structure that has been filled with values determining what 
kind of window you want, where you want it to appear on the screen, and other op
tions specified in the NewWindow structure. Figure 7-1 shows the format. It has been 
taken from the gadget display program in Chapter 11. 

Whenever you open a new window, you simply initialize a structure (giving your 
window specifications) and pass the structure address to Open Window. In the exam
ple below, New Wind is the structure's address as yielded by equating the address (New
Window) with the current assembler location (*). It couldn't be simpler. 

New Wind equ 
LeftEdge dc.w 100 
TopEdge dc.w 50 
Width dc.w 200 
Height dc.w 60 
Detail Pen dc.b -1 
BlockPen dc.b -1 
IDCMPFiags dc.l CLOSEWINDOW!GADGETUP!MENUPICK 

Flags de .I WINDOWCLOSE!SMART _REFRESH!ACTIVATE 

FirstGadget dc.l GadgetO 
CheckMark dc.l 0 
Title de .I wtitle 
Scren dc.l 0 
BitMp dc.l 0 
Min Width dc.w 0 
MinHeight dc.w 0 
MaxWidth dc.w 0 
MaxHeight dc.w 0 
Type dc.w WBENCHSCREEN 

Fig. 7-1. The format of the NewWindow structure used in the Gadget Box program. 
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Despite this simplicity, there's something of a disadvantage in the method used 
to declare the New Window structure above. By giving each member of the structure 
a unique name (such as TopEdge), it's easy to address it directly from within a pro
gram, but if there happens to be two or more New Window structures in a program, 
there will have to be a unique name for each "TopEdge" member of every structure. 
You could use TopEdge1, TopEdge2, and so on, but this can become tedious with so 
many structures to keep track of. For instance, the calculator program in Chapter 13 
has to be able to address 40 gadget structures. 

It would make much more sense to be able to refer to a structure member as an 
offset from the structure start. Not only is this less tiresome, but you can use one of 
the addressing modes of 68000 that lends itself perfectly to this situation-address reg
ister indirect with displacement. If TopEdge were defined to be a displacement instead 
of an absolute address, it could be used anywhere in a program to access the proper 
location within the structure. In the above example, there is a two-byte word (dc.w) 
preceding it, so TopEdge would be equated to the number 2-it is set two bytes into 
the structure. Thus, if register al contained the address of the New Window structure, 
the following instruction: 

MOVE.W dO,TopEdgeCal) 

would move the 16-bit word from dO into the top edge value of the New Window struc
ture. If register al were changed to contain the address of a different NewWindow 
structure, the very same opcode would access two bytes into that structure. This method 
of labeling using offset names is how structures are defined and accessed in the 
Amiga. When you use structures, as long as you access values at their preordained 
offsets from the structure start, you will be using a known parameter. 

As another example, consider the structure defining a gadget that may be used 
within a window (Fig. 7-2). Aside from a few comments, this appears exactly as it is 
defined in the include file-intuition.i-that is provided with the Amiga Macro Assem
bler package. You'll notice what appear to be some strange storage declarations in the 
opcode fields. These are, in fact, predefined macros taken from another include file 
called types.i. These storage macros allow a structure to be defined much more easily, 
and allow each member of the structure to be referred to by a named offset into the 
structure. In this structure, predefined macros allocate structure storage according to 
the length of the data type for each structure element. These macros, as defined in 
the types.i file, are used extensively throughout other include files. A perusal through 
types.i shows which data-type macros have been predefined. The ones used in this ex
ample are as follows: 

WORD-a 16-bit data word, two bytes long. 
LONG-a 32-bit data word, four bytes long. 
APTR-an address pointer, four bytes long. 
STRUCTURE-a macro to define the start of the structure and some space at the 

start so that it can be linked into a list or queue. 
LABEL-this macro defines a label that is the size of the entire structure. 
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STRUCTURE Gadget,O 

APTR 
WORD 
WORD 
WORD 
WORD 
WORD 
WORD 

WORD 

gg_NextGadget 
gg_LeftEdge 
gg_TopEdge 
gg_Width 
gg_Height 
gg_Fiags 
gg-.Activation 

gg_GadgetType 

;next gadget in the list 
;"hit box" of gadget 
;"hit box" of gadget 
;"hit box" of gadget 
;"hit box" of gadget 
;see below for list of defines 
;see below for list of defines 

;see below for defines 

;appliprog can specify that the Gadget be rendered as either as Border 
;or an Image. This variable points to which (or equals NULL if there's 
;nothing to be rendered about this Gadget) 

APTR gg_GadgetRender 

;appliprog can specify "highlighted" imagery rather than algorithmic 
;this can point to either Border or Image data 
APTR gg_SelectRender 

APTR gg_GadgetText ;text for this gadget 

LONG gg_MutuaiExclude ;set bits mean this gadget excludes that 

;pointer to a structure of special data required by Proportional, String 
;and Integer Gadgets 
APTR gg_Speciallnfo 

WORD gg_GadgetiD ;user's ID field 

APTR gg_UserData ;ptr to g.p. user data 

LABEL gg_SIZEOF 

Fig. 7-2. The intuition-library gadget structure. 

Other Macros 
Many useful macros are defined in other include files. For instance, the include 

file alert.i contains a macro called ALERT. By including this file in your source code, 
you can have the code generated to cause an alert simply by using the ALERT macro 
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and specifying some parameters that you want passed to the alert library routine. The 
library macros, used this way, can save a lot of coding effort. 

Equates 
In addition to structure and macro definitions, the include files contain many la

beled equates. These equates allow you to use names in place of absolute quantities 
in your program. This makes your program infinitely more readable. 

For instance, when specifying a gadget to be used in a window, a flag field (called 
gg-Flags) exists within the gadget structure; it determines how the gadget is to be high
lighted when selected by the user. Imagine you want your gadget to have a box drawn 
around it when it is selected. This is accomplished by setting the bit in position zero 
of gg_Flags to one. For you as the programmer, it is far more enjoyable and readable, 
and much less prone to cause an error, if you achieve this by using a value called GADG
HBOX rather than the number 1, even though each is equivalent to the other. 

Many such equates exist within the include files. The usefulness of these equates, 
wherever they are available, cannot be exaggerated. Take a look at the portion of the 
intuition.i include file shown in Fig. 7-3. Once again, this has been extracted from the 
part of the file dealing with gadgets. Notice that the third value equated is the GADG
HBOX value mentioned above. You can see that it would be almost impossible to do 
without the numerous equates defined in this file. There are so many values-all with 
different meanings-that your program stands only to gain by their use; not only in 
readability, but in accuracy. You're much less likely to make a mistake when using 
a mnemonic such as GADGHBOX rather than having to remember which bit it 
represents. 

Fig. 7-3. A portion of the intuition.i include file. 

; --- FLAGS SET BY THE APPLIPROG 

; combinations in these bits describe the highlight technique to be used 
GADGHIGBITS equ $0003 
GADGHCOMP equ $0000 
GADGHBOX equ $0001 
GADGHIMAGE equ $0002 
GADGHNONE equ $0003 

;Complement the select box 
;Draw a box around the image 
;Blast in this alternate image 
;don't highlight 

; set this flag if the GadgetRender and SelectRender point to Image imagery, 
; clear if it's a Border 
GADGIMAGE equ $0004 

; combinations in these next two bits specify to which corner the gadget's 
; Left & Top coordinates are relative. If relative to Top/Left, 

; these are "normal" coordinates 
GRELBOTTOM equ $0008 ; set if rei to bottom, clear if rei top 
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GRELRIGHT equ $0010 ; set if rei to right, clear if to left 

; set the RELWIDTH bit to spec that Width is relative to width of screen 
GRELWIDTH equ $0020 

; set the RELHEIGHT bit to spec that Height is rei to height of screen 

GRELHEIGHT equ $0040 

; the SELECTED flag is initialized by you and set by Intuition. It 
; specifies whether or not this Gadget is currently selected/highlighted 
SELECTED equ $0080 

; the GADGDISABLED flag is initialized by you and later set by Intuition 
; according to your calls to On/OffGadget( ). It specifies whether or not 
; this Gadget is currently disabled from being selected 
GADGDISABLED equ $0100 

; - - - GADGET TYPES 

; These are the Gadget Type definitions for the variable GadgetType. 
; Gadget number type MUST start from one. NO TYPES OF ZERO ALLOWED. 
; first comes the mask for Gadget flags reserved for Gadget typing 
GADGETTYPE equ $FCOO ; all Gadget Global Type flags (padded) 

SYSGADGET equ $8000 ; 1 = SysGadget, 0 = AppliGadget 

SCRGADGET equ $4000 ; 1 = ScreenGadget, 0 = WindowGadget 

GZZGADGET equ $2000 ; 1 = Gadget for GIMMEZEROZERO borders 

REQGADGET equ $1000 ; 1 = this is a Requester Gadget 

; system gadgets 
SIZING equ $0010 

WDRAGGING equ $0020 

SDRAGGING equ $0030 

WUPFRONT equ $0040 

SUP FRONT equ $0050 

WDOWNBACK equ $0060 

SDOWNBACK equ $0070 



CLOSE equ $0080 

; application gadgets 
BOOLGADGET equ $0001 

GADGET0002 equ $0002 

PROPGADGET equ $0003 

STRGADGET equ $0004 

THE INCLUDE FILES 

Altogether, there are about seventy include files listed in Commodore's ROM Ker
nel Manual. The few outlined here will give you a feel for what's available to the 
assembly-language programmer, and when certain files might be used. Here is a brief 
rundown of some of the include files available: 

alerts.i 
This file contains a useful macro called ALERT, which simplifies the code that 

has to be written to invoke an alert box on the Amiga screen. When such an alert is 
displayed, it is shown with some "magic" numbers describing the cause of the alert. 
These special alert numbers are all defined within this file. 

dos.i 
As its name implies, this file contains information of relevance to the disk operat

ing system. Some DOS structures, such as FileinfoBlock, are defined here. Of particu
lar interest are the equates that define the DOS error codes returned by the IoErr library 
call. 

dosextens.i 
This file extends the usefulness of the dos.i include file. It is intended for program

mers who need more in-depth features than provided in dos.i. Many structures, such 
as the DOS process structure and the command line interface structure, are defined here. 

intuition.i 
This file contains all the structures and definitions required to use the Intuition 

user interface. It will be used by any application programmer who needs to use win
dows, menus, gadgets, and so on. Any of the objects associated with the graphical user 
interface will have their equates and data structures defined here. 

Another useful thing about intuition.i is the inclusion of many descriptive comments 
throughout the file. These help to clear up any misunderstandings that might arise 
regarding the internal use of intuition. 

libraries.i 
The libraries.i include file contains some definitions that are useful when you are 
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writing your own libraries. More useful, though, are the macros provided to simplify 
library calls and external definitions. These are described in detail in the next section. 

lists.i and nodes.i 
These files are used to help deal with the lists and queues used by exec. The list.i 

file contains many macros that generate list-manipulation assembly code. Some useful 
node identification values are defined in nodes.i. 

ports.i 
This file defines the message and message port structures required when using 

the message-passing mechanisms of the executive. 

startup.i 
This include file contains structures useful for a program that has been started up 

from the Amiga Workbench. 

tasks.i 
This file is included if your program (which runs as an Amiga task) needs to know 

anything about its runtime environment. It contains task-related structures and equates. 

types.i 
The types.i file contains the definitions of various basic data types. These defini

tions are subsequently used by other include files. Whenever another include file de
fines a data-structure specification, it will do so using data types defined here. For that 
reason, most other include files themselves need to include types.i. Consequently, types.i 
is likely to be the first included file in many programs. 

THE LIBRARY CALL 

So far, you've taken a look at the tools provided in the form of named equates and 
structures. Now, a closer look at the mechanism used to perform useful work on the 
Amiga-the library call-is needed. 

As explained in the last chapter, the library routines are called by executing a JSR 
to an offset from a library's base address. This base address is only known to a pro
gram after the library in question has been opened. Thus, before using any library rou
tine, the library must have already been opened and its base address pointer saved. 
The open is accomplished by using an exec library call appropriately named Open
Library. You need to know the exec library base before you are able to use this call. 
Apparently, a special situation exists at this point. It seems as if you need exec's li
brary base in order to open the exec library to find its library base! In fact, you don't 
need to open the exec library to find its base address. A location exists in the Amiga's 
memory that always contains exec's library base pointer. This is absolute location 4, 
more properly referred to by the name __AbsExecBase. 

Suppose you wanted to open a window on the Amiga screen. As you've already 
seen, this is performed by using the Open Window routine available from the Intuition 
library. Before you can use the routine, you have to open the Intuition library. To open 
Intuition requires the OpenLibrary call to be available. This is part of the exec library, 
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which therefore must itself be located first. Thus two main steps are required before 
using Open Window: 

1. Find the exec library's base pointer. The OpenLibrary procedure will then be 
available. 

2. Open the Intuition library. The Open Window procedure is now available. 

Obviously, location 4 is a very important address in the Amiga and should never be 
changed by any program. 

To call a routine within a library, its base address is loaded into an address regis
ter and a JSR made to a negative offset from this base. By convention, the address 
register used is usually a6, but it can be any 68000 address register, if so desired. From 
assembly language, all library routines on the Amiga are called by using the routine 
name preceded by _L VO. The characters LVO stand for library vector offset. Every 
single assembly language library call is performed this way. The exec library routine 
Disable, for example, would be called as follows: 

MOVEA.L _Abs~xec8ase.a6 

JSR _LVODisable(a6) 

In the above example, _AbsExecBase would have previously been defined as four, 
but what about _L VODisable? None of the _L VO names are equates, even though 
they only represent a negative offset from a library base. Each one of them has to be 
individually defined as an external quantity by your program prior to its use. The ac
tual value assigned to each offset is determined not by the assembler but by the linker 
after the assembly has been completed. The linker program will link your assembled 
object code with any library you specify. It's this library that lets the linker know what 
values to assign to the _L VO offsets. When the library was put together, its _L VO 
names were defined as externals using the assembler XDEF directive. When your pro
gram wants to access them, they will be defined as external references by using the 
assembler's XREF directive. Thus, the assembler knows to leave such symbols to the 
linker, which gets their values from the library you specify. 

To recap the library call mechanism: first, the required library must be opened 
to obtain its base address. This base address should be saved as it will be needed when
ever you are using that library. Then, when a routine from a library is needed, the 
appropriate library base address should be in register a6. Finally, at the source code 
level, a JSR _L VOName(a6) is executed. It performs the subroutine call. 

A few useful macros exist within the include file libraries. These macros are named 
LINKLIB and CALLLIB. Another useful macro, called EXTERN_LIB, is defined in 
types.i. These macros are provided for assembly language programmers as a shortcut 
to the regular protocol of declaring and calling library routines. When you declare a 
library routine as external, you do so using a line such as: 

::<REF _L1·.-10Debl..lg 
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By using the macro EXTERN_LIB, you can simply type: 

EXTERN_LIB Debug 

When expanded by the assembler, this would generate the XREF line above but would 
spare you the clutter of the _L VO prefix. 

Most assembly-language library calls are performed using code such as: 

JSR _LVOName<a6) 

The CALLLIB macro allows you to omit the (a6) register specification. The above 
JSR could then be coded as: 

CALLIB _L'...'OName 

This assumes that register a6 already contains a valid library address. If not, you could 
preserve the contents of a6 on the stack before loading it with the proper library ad
dress. After making the library call, you would then restore a6 from the stack. All this 
would look something like this: 

MO'-.'E. L a6,-(sp) 

t"'01..-1E. L 

JSR _LVOName C36) 

MOVE.L (sp)+,a6 

Using the LINKLIB macro, this entire four lines of code can be replaced by typing: 

LINKLIB _LVOName. lib_base 

REGISTER CONVENTIONS 
All Amiga system functions use a consistent set of register conventions. By know

ing and following them, you'll have a chance of following the same protocol within your 
own code. You'll also know which registers might or might not be corrupted by any 
routines. 

Data registers dO and dl, and address registers aO and al are always available as 
"scratch" registers. Other routines you call are allowed to change these registers without 
saving them. Your routines may do the same. Therefore, if any of these four registers 
contain valid data before a call, they should be saved before you make the call and 
then restored afterwards. If you pass any parameters in these registers, they might 
not be there after a function call. All other registers will be kept intact. 

If a routine yields a result, it is returned in register dO. If more than one result 
is returned, the most important will be in dO, and others will be stored in data structures. 
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Address register a6 is used by the Amiga system functions as a library base pointer. 
Its use as a parameter register is therefore discouraged. 

THE LIBRARY ROUTINES 
With this description of the mechanism of the Amiga software interface, it remains 

only to know what routines are available to perform the work required by your pro
gram. This is once again where the ROM Kernel Manual comes in. It describes in de
tail what each function does, which library it is found in, what parameters need to be 
passed, and what results may be returned. You can find some of these details in the 
appendix, which gives a list of these functions and the registers used by them. Here 
is a quick rundown of the libraries available and the kind of routines they perform: 

clist.library 
This library contains routines that deal with the manipulation of character lists, 

which contain variable-length strings of bytes that can be dynamically allocated and 
deallocated in discrete blocks of the Amiga's RAM. 

diskfont.library 
This contains two routines, A vailFonts and OpenDiskFont, which provide infor

mation about fonts stored on disk. 

dos.library 
In dos.library, you'll find all the routines concerned with file handling. All kinds 

of files are supported by this library, not just disk files. Routines exist to open, close, 
lock, position, read, and write files. Disk directories are also handled by this library. 
Routines are provided for process handling as well as loading and unloading program 
code. The Execute routine allows you to run a CLI command from within your program. 

exec.library 
This important library contains all the routines necessary to run tasks on the 

Amiga. It consists of nearly 90 separate routines that perform various system duties. 
Some routines deal at the low level of the 68000 microprocessor, while others deal at 
the Amiga library level. The routines fall under the following headings: 

Devices 
Interrupts 
Libraries 
Lists 
Memory Allocation 
Messages 
Resources 
Tasks 

The exec library, among a few other miscellaneous routines, contains the code to 
perform an alert. Also included is the Debug routine, which provides the interface with 
the machine-code debugger. 
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graphics.library 
This large library contains the code that allows you to use the Amiga's graphic 

capabilities right down to the hardware level. This library, however, doesn't deal with 
high-level entities such as gadgets or windows-the intuition library serves that pur
pose. The graphics library is used more for dealing with the graphics hardware than 
dealing with user-interface graphics such as menus or pointers. There are routines that 
deal with pixels, image areas, text, gels, sprites, and blitter objects. In all, nearly 100 
routines are available for graphic programming of the Amiga. 

icon.library 
This library contains routines that deal with the Workbench icons and the entities 

they represent. 

intuition.library 
This is another library that ranks in importance alongside the exec and graphics 

libraries. The routines in this library give the programmer the opportunity to access 
the Amiga's user-friendly interface. It's the Intuition routines that allow applications 
to provide the end user with the familiar environment of multiple windows and menu 
selections. More than 60 library routines are available. They allow the manipulation 
of screens, windows, gadgets, requesters, menus, text items, and messages. An inter
face to the Workbench is also provided. 

layers.library 
Contained in this library are the low-level routines used in maintaining layers of 

screen objects. 

The Mathematics Libraries 
Three separate library files are provided for dealing with floating-point quantities 

in Motorola and IEEE format. They are as follows: 

mathffp.library. This provides routines for dealing with numbers in Motorola 
Fast Floating Point format. 

mathtrans.library. This is a transcendental math library that contains functions 
for dealing with floating-point numbers in the same Motorola format. 

mathieeedoubbas.library. This library file contains routines to deal with double
precision floating-point numbers in IEEE format. 
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The Amiga 68000 
Development System 

The Amiga Macro Assembler Development System is available as the official 
Commodore-Amiga tool for assembly-language software developers. Although most 
material in this chapter is based specifically around that product, the principles involved 
won't change very much from one development package to another. Some might offer 
enhancements to the material that is covered here; some might save you money by 
offering less. Either way, whatever editor/assembler you happen to be using and which
ever debugger you have, this chapter will give you an overview of the typical parts 
in any development system. 

The Commodore-Amiga development package consists of a number of interrelated 
programs. First, you'll be using one of the two Amiga editors-either Ed or Edit-that 
are available from the Workbench disk. The editor is normally included as part of many 
assembler packages, but in the Amiga's case it's already available in the c directory. 
On the Macro Assembler development disk, in addition to the assembler itself, there's 
a linker, a debugger, a few utilities, a linking library, and those all-important include 
files. Also from the Workbench disk, the Execute command can be put to good use 
to automate an entire pass through the assembler, utilities, and linker. 

A normal sequence of events is started by entering the source code into the editor. 
It doesn't matter which one you use as long as it produces ASCII text. The file produced 
by the editor is then input to the assembler, which produces a relocatable linker file. 
The linker program, upon reading this file, produces the final application file, linking 
with other files or libraries if necessary. Theoretically, the application program can 
then be run; however, this process assumes everything goes perfectly the first time 
(which it rarely does). Usually, a few typographical errors creep into the source code 
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the first time it is input. Upon sensing these, the assembler gives some error messages; 
at this point you have to retrace your steps back to the editor stage to correct them. 

As well as an object-code file, the assembler can also produce two other files. The 
first is an optional listing file for possible printout or perusal on the screen. Second, 
you can request a verification file, which is used to keep a list of any error messages 
that may be generated. This is especially useful if a lot of errors that would otherwise 
go flying by on the screen occur. When you reach the stage at which all typos have 
been weeded out, the assembler will run without producing any error messages. 

After the linker produces an executable application, the chances are that some
thing won't work exactly as anticipated. Then the debugger part of the development 
system-called ROMWack-can be used to help track down the problem. (This is as
suming that cold, logical common sense can't identify the problem first.) 

The Execute command can automatically run the assembler, linker, and even the 
application itself from a script file. An especially useful thing about the Execute com
mand is that if one step in the chain fails, it prevents the next from being executed. 
This prevents wasted efforts, such as trying to link a program that was assembled with 
errors in it. 

The following sections provide a look at each of the main parts of the system in 
more detail. 

THE EDITOR 

The editor part of the Amiga development system will be used to produce link con
trol files as well as to process assembly-language source code. The link control files 
contain instructions that are used by the linker to find out which relocatable files to 
link together. You will also use the editor if you wish to produce a job control (or script) 
file. This is read by the Execute command to direct its automatic sequencing of opera
tions on the Amiga. 

There are two main editors available on the Amiga; they differ mainly in the way 
they let you deal with the file being edited. One of the editors, called Edit, only deals 
with text one line at a time. The other, called Ed, lets you manipulate a whole screen
ful at a time. Line editors are a throwback to the days when the most common console 
in use was a teletype terminal. These could only function using a line at a time for 
input and output, and were thus best served by a line editor. With the advent of video 
terminals, screen editors became available. Screen editors can take advantage of the 
fact that a large rectangle of characters is available for viewing. It would seem from 
these facts that a screen editor is the most natural choice on the Amiga. If you're al
ready used to using a line editor, however, you might want to use Edit-otherwise Ed 
seems the more natural choice. 

Most modem screen editors function in a similar manner. When Ed starts up, you 
are either looking at a blank screen because you're creating a new file, or you see the 
beginning screenful of an existing file. Either way, if you start typing printable charac
ters, they are placed on the screen at the position where the cursor is displayed. Cer
tain keys-such as the arrows-move the cursor around the screen, scrolling the file 
forwards or backwards on the screen if necessary. Other keys perform commands the 
instant they are pressed; for example, the backspace key immediately deletes the charac
ter to the left of the cursor. Other immediate commands that are performed by control 
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keys include inserting and deleting lines, moving to the top and bottom of the screen, 
and other simple functions. 

Many functions are performed by using extended commands. These commands 
usually require more than a single keystroke in order to work. This includes things 
such as saving the file, inserting files, and manipulating blocks, all of which require 
multiple keystrokes to define the item being worked on. Extended commands are in
itiated by pressing the escape key. A command line upon which you type the extended 
command then appears at the bottom of the screen. 

The kinds of text manipulation allowed by the editor include the movement, inser
tion, and deletion of demarcated blocks of text. Also, a command to find or change 
a string of characters is included in the extended commands. This will look for the 
specified string and optionally change it to another. Other features are included to help 
in formatting text in columns for easy reading. Tab stops can be set at predefined regular 
points across the page by changing the tab distance (variable tab fields are not sup
ported). The editor also provides an auto-indent facility. This lets you set an automatic 
left-hand margin that will be taken as the alignment for the first character on each new 
line after the return key is pressed. 

The editor can deal with text files only. Don't try to edit Amiga files containing 
pictures; the editor simply cannot deal with such nontextual information. Files produced 
by one editor can, however, be input to another as long as they are saved in ASCII 
format. Most editors do this normally, but some word-processors don't. 

THE ASSEMBLER 
The assembler is probably the heart of the whole development system. This is the 

program that takes the source text files and produces a file containing relocatable ob
ject code and the symbol table. None of the output from the assembler is directly ex
ecutable as a machine-code application. Even an application consisting of a single 
source-code file has to be dealt with by the linker before a usable application is produced. 

The assembler is started up from the command line interface and takes the follow
ing form: 

ASSEM <sfile> <parameters> 

where <sfile> is the name of the source-code file, and <parameters> specifies in
formation to direct the assembler as follows: 

- o object file 
-1 listing file 

- v verification file 
- h header file 
-c options 
- i include directories 

The -o switch specifies the object file to be output by the assembler. If this is 
not given, no object file will be produced. The listing file is also optional and is sped-
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fied after the -1 switch. Any errors detected are normally displayed on the screen un
less redirected by the specification of a verification file. The assembler can be forced 
to include a file at the head of the source code by using the - h flag. Normally, include 
files are assumed by the assembler to be present in the current directory. You can specify 
other directories to be scanned by naming them after the - i switch. Finally, the as
sembler can be passed some options after the - c switch. These options are as follows: 

C ignore case distinction in labels. 
D don't dump local labels as part of the symbol dump. 
S output a symbol dump with the object file. 

Wn use a workspace of size n bytes. 
X append a cross-reference table to the listing file. 

Only ASCII text files can be input to the assembler. These files consist of lines 
of text separated by new line characters. They may be assembler directives (pseudo
ops), assembly-language lines, comment lines, or blank lines. The listing file, which 
can be optionally produced by specifying the -1 switch, can subsequently be output 
to the printer or the serial port by using the regular utilities on the Amiga, such as 
TYPE or PRINT. 

Assembler source-code lines contain four possible fields: a label, an opcode 
mnemonic, an operand, and a comment. An example looks like this: 

label1; MOVE #3,00 ;Use two-bit mask 

Normally the assembler discriminates between upper- and lowercase in labels, tak
ing LoOp and loop as separate symbols. If, however, you use the - c C option, the as
sembler doesn't make any distinctions between upper- and lowercase-labell would 
be exactly the same to the assembler as LaBeLl. Strings within quotes, however, are 
always used as specified in upper- and lowercase with no case conversion. If a label 
is indented from the left-hand side, the assembler has no way of knowing if the inden
tation leads to a label or an unlabeled opcode. Therefore, to identify a label that has 
been indented, it must be immediately followed by a colon; for example, Label2:. Other
wise, as long as a label starts in the leftmost column, it doesn't have to have a colon 
appended. Local labels, which are labels whose scope is limited to a delimited section 
of code; are allowed. Local labels are identified by a decimal number up to three digits 
in length followed by a dollar sign. These local labels are significant to the assembler 
only within a section of code delimited at both ends by a normal, nonlocallabel. They 
are useful because they can be used over and over again, thus saving space in the as
sembler's symbol table. 

The opcode field has to be preceded by at least one space or tab character. It can 
be a 68000 opcode mnemonic, an assembler directive, or a macro instruction. The oper
and, if any, that follows must also be preceded by a space or a tab. The final item on 
the line-the comment-is often delineated by a semicolon, but this is not mandatory. 
The Amiga assembler ignores anything following the space or tab after the operand 
field. The remainder of the line is then bypassed by the assembler. An asterisk in the 
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first column signifies that the whole line is a comment and will be entirely skipped over 
during the assembly process. 

The normal 68000 instruction lengths of byte, word, and long word are signified 
by the opcode suffixes .B, .W, and .L. Branch instructions are normally assembled in 
their long form, but .S may be appended to a branch opcode to cause it to be assem
bled in its short form. In contrast, jump instructions default to the word form unless 
the address specified is 32 bits long. The assembler does not recognize the .L suffix 
as specifying the long-word form of a jump. 

In numerical expressions, binary, decimal, hexadecimal and octal numbers are all 
recognized by the assembler. Decimal is the default, and can be overruled by prefixing 
the number with a symbol. A percent sign specifies a binary number, a dollar sign speci
fies a hexadecimal number, and an at symbol(@) is used to denote an octal number. 
Expressions involving any of these number bases may be used wherever an operand 
requires a number. 

Strings are specified by placing single quotes around the characters. A single quote 
within the string is represented by two successive single quotes. 

Symbols used within the assembly may contain the alphanumeric characters (A-Z, 
a-z, and 0-9), an underline, a period, or a dollar sign. To be distinguished as a symbol, 
it can only start with an alphabetical character, an underline, or a period. The symbol 
names used can be up to 30 characters in length. If they are any longer, they will be 
truncated, and a warning message will be issued. Although the assembler normally 
distinguishes between upper- and lowercase in labels, it doesn't make any such dis
tinction with opcodes or register names. 

Figure 8-1 is a list of assembler directives available. This will give you a good idea 
of the capabilities available to the macro assembler within the Amiga Development 
System. 

THE LINKER 
The linker program produces the final executable version of an application by linking 

together its constituent object files as produced by the assembler. 
The linker uses two kinds of input files: a WITH file that can optionally control 

the linker, and any number of relocatable object files (including libraries). It produces 
up to four kinds of output files: the application itself, a map file, a cross-reference file, 
and a verification file. The verification file lists any errors or warnings that might have 
been detected during the link process. The linker is invoked from the CLI using the 
following format: 

ALINK FROM <ffile> TO <tfile> WITH <wfile> VER <vfile> 

LIBRARY <lfiles> MAP <mfile> XREF <xfile> WIDTH n 

The files specified are: 

<ffile> 
<tfile> 
<wfile> 
<vfile> 

the file to link from (output from the assembler). 
the file to send link output to (the application). 
a parameter file as specified below. 
a verification file containing linker error messages. 
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Assembler Control Directives 

CNOP 
END 
ENDC 
I Fcc 
IDNT 
INCLUDE 
OFFSET 
RORG 
SECTION 

Conditional no op 
End of source code 
End conditional assembly 
Assembly conditional on cc 
Name program unit 
Include source file 
Define offset table 
Relative origin 
Program section 

Symbol Definition Directives 

DC 
DCB 
DS 
ENDM 
EQU 
EQUR 
MACRO 
MEXIT 
REG 
SET 
XDEF 
XREF 

Define constant 
Define constant block 
Define storage 
End macro definition 
Equate permanent value 
Equate register 
Define macro 
Exit macro expansion 
Define register list 
Equate temporary value 
Symbol defined as external 
Symbol referenced is externally defined 

Assembler Listing Control 

FAIL 
LIST 
LLEN 
NOOBJ 
NO LIST 
NOPAGE 
PAGE 
PLEN 
SPC 
TTL 

Flag assembler error 
Enable program listing 
Set listing line length 
Disable object code output 
Disable program listing 
Disable listing pagination 
Eject to top of page 
Set listing page length 
Space blank lines 
Set program listing title 

Fig. 8-1. Assembler directives available to the macro assembler in the Amiga Development System. 

<lfiles> 
<mfile> 
<xfile> 

library files to be searched for any unresolved labels. 
a link map output file. 
a cross-reference output file. 

The linker can be directed in its execution by the control file, which is named us
ing the WITH parameter at the CLI command line to ALINK. This file determines 
which object files and libraries should be linked and, optionally, how the application 
should be segmented. It can also select the listing width option. Each command in the 
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control file is contained in a separate line and is preceded by any of the command key
words as specified on the CLI command line itself. 

Here's the full list of linker commands that can appear in a WITH files: 

FROM (or ROOT) 
TO 
LIBRARY 
MAP 
XREF 
OVERLAY 
<tree structure> 
# 
WIDTH 

<£files> 
<tfile> 
<lfiles> 
<mfile> 
<xfile> 

n 

The parameters are, for the most part, the same as those specified on the ALINK com
mand line. One additional command can be used, and that involves the sequence OVER
LAY <tree structure> #.This permits an application to be split into separate pieces 
to save memory. 

Each program overlay is actually loaded into memory only when a call is made 
to one of its routines. This is all totally invisible to the program code, which just exe
cutes as if it were in one whole piece. The linker provides the workhorse in the form 
of an overlay supervisor that it links in with the application code. This overlay supervi
sor then keeps track of which module needs to be in memory at any particular time. 
The tree structure given with the OVERLAY command tells the linker which module 
is capable of being called by (and therefore overlaying) another. 

THE AMIGA DEBUGGER 
The debugging section of any development system is one of its most important 

parts. Many programmers would argue that it's even more important than the assem
bler. That's why the assembler was described as probably the heart of the development 
system. The reason for the debugger's eminence is because more development time 
is often spent in debugging the program than in writing and assembling it. 

The Amiga debugger, ROMWack, can be used when the application is loaded to 
allow some control over its execution. This is taken for granted by programmers of 
interpreted languages like BASIC, but for a machine-code programmer, such control 
rarely exists. The most common occurrence involving a bug in a machine-code pro
gram is that the system crashes and the offending code is overwritten by garbage. Even 
if you can recover the operating system, there might be no evidence left to analyze. 

ROMWack resides in memory as part of the Amiga ROM software. As with other 
ROM routines, library calls that enable use of some of the debugger facilities are avail
able. These routines are provided for convenience only; they are not meant to provide 
the major interface to the debugger. 

ROMWack works by communicating at 9600 baud through the serial interface. 
Thus, to use it, you need another terminal connected to the serial port. By working 
this way, operation of the debugger doesn't affect anything that appears on the screen. 
In fact, ROMWack minimizes interference with any of the internal Amiga organiza-

97 



tion by using a small area of memory and effectively freezing the operating system. 
Even the Amiga pointer stops tracking when ROMWack is in control. Therefore, you 
can scan through memory knowing that you're seeing the system exactly as it was when 
the debugger was invoked. 

There are two main ways to use ROMWack. One is to use a utility provided on 
the system development disk. The utility is itself called ROMWack, and provides a 
way to enter the ROM debugger. By simply typing ROMWack, the system comes to 
a dead stop and all the registers are displayed on the external terminal, which now 
takes control. This method of using the debugger assumes that there is already some
thing in memory that you wish to debug. As you become adept with the Amiga, you 
can take limited control of the entire operating system from the external terminal. 

The easiest way to use ROMWack while debugging an application program is 
slightly different. You use a special library routine _L VODebug in your code at the 
point where you want the debugger to take over. Using the debugger like this lets your 
program execute normally until the _L VODebug call is made. At that point, your pro
gram, along with the whole system, stops under control of ROMWack. 

When you are in ROMWack, you can step or trace instructions in ROM or RAM, 
display and change memory or registers, display and set breakpoints, and redirect pro
gram execution. Unfortunately, a disassembler that displays opcode mnemonics is not 
provided, but other Amiga debuggers that provide extra facilities, such as the use of 
the Amiga console, are available. ROMWack has been kept intentionally simple, and 
thus small and unobtrusive. When it first gets control, it displays all the 68000's registers 
and stack frame (memory pointed to by the stack pointer). It then awaits input in the 
form of one of the commands outlined above. Unfortunately, the buck stops there. 

THE UTILITIES 

Alongside the assembler and linker, several utilities are provided with the Amiga 
software development package. Here's a short description of each one: 

AbsLoad: This utility loads a relocatable program into an absolute address in mem
ory. All programs output from the linker are relocatable. At run time, they are loaded 
into whatever memory is available under the control of the executive. Absload lets you 
specify an absolute address (which may be useful for debugging purposes) and loads 
it there. Care has to be taken that the memory chosen has not already been allocated 
to another task. 

AddMem: This allows you to manually configure external memory. 
ATOM (Alink Temporary Object Modifier): This program allows you to place 

code and data modules into specific types of the Amiga's memory. For instance, you 
might want a particular data hunk of a program to be loaded into the Amiga's chip 
memory area. ATOM specifies this by preprocessing an object module before it is dealt 
with by the linker. After being modified, it is processed by Alink in the normal way. 

Avail: This program lets you list available memory. 
Frags: This program allows you to scan memory fragments. 
ObjDump: This utility performs a dump of a linked program file. The output is 

formatted in rows of hexadecimal long words. The constituent code and data chunks 
are identified as they are encountered in the file. 

98 



ROMWack: This program allows you to enter the ROM debugger. 
Snoop: This program lets you check on memory usage. 

THE INCLUDE FILES 
As you will realize by now, the include files are an extremely important part of 

any software development system. Without them, you're forced to use numerical quan
tities instead of more easily remembered mnemonics. The include files supplied with 
the Amiga software development system are so comprehensive that it's difficult to im
agine having to program without them. 

libraries (dir) 

diskfont.i 
dosextens.i 

workbench (dir) 

icon.i 
workbench.i. 

exec (dir) 

ables.i 
devices.i 
exec.i 
execname.i 
funcdef.i 
interrupts.i 
libraries.i 
memory.i 
ports.i 
strings.i 
types.i 

graphics (dir) 

clip.i 
display.i 
gfx.i 
layers.i 
regions.i 
text.i 

dos.i 
translator.i 

startup.i 

alerts.i 
errors.i 
execbase.i 
exec_lib.i 
initializers.i 
io.i 
lists.i 
nodes.i 
resident.i 
tasks.i 

copper.i 
gels.i 
gfxbase.i 
rastport.i 
sprite.i 
view.i 

Fig. 8-2. The layout of the include directory. 

intuition (dir) 

intuition.i 

resources (dir) 

cia.i ciabase.i 
disk.i misc.i 
potgo.i 

hardware (dir) 

adkbits.i blit.i 
cia.i custom.i 
dmabits.i intbits.i 

devices (dir) 

audio.i bootblock.i 
clipboard.i console.i 
gameport.i input.i 
inputevent.i keyboard.i 
keymap.i narrator.i 
parallel.i printer.i 
serial.i timer.i 
trackdisk.i 
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It is possible for the include files to be even more accurate than the documenta
tion. This is because the include files are actually used within your program: their con
tents provide the absolute definition of any quantities or structures used by your 
program. In fact, while working on the calculator program (see Chapter 13), I came 
across two mistakes in the preliminary documentation. Each one misdefined a struc
ture, causing the program to malfunction. By scanning the appropriate include file, it 
was possible to determine the real structures and rectify the program accordingly. In 
effect, the includes become part of your code; in the case of macros, the includes do 
actually generate code for you (as in the case of the ALERT macro). 

Figure 8-2 shows the layout of the include directory as supplied with the develop
ment system. Each file has a descriptive name that gives an idea what software it sup
ports and whether or not it may be worth using in your program. 
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The Program 
Design Process 

Once you have the programming tools and expertise at your disposal, the temptation 
to rush in and start writing a program is enormous. The sheer pleasure that can be 
derived from piecing together the building blocks that comprise a program causes too 
many programmers to forge ahead regardless of the consequences. The building blocks 
to build a house can't be put into place until the house has been designed, and exactly 
the same is true for a program. 

Unfortunately, interactive programming languages like BASIC provide such an easy 
means of writing and debugging programs that many people pick up bad habits. It's 
so easy to enter a few lines of BASIC code that achieve a small but useful purpose. Then 
an enhancement is added. Then another. It's not too long before a program of respect
able length grows from this process. Then an early routine needs to be changed to deal 
with a situation that didn't exist when the first few lines were written. More than likely, 
some of the later routines will use this now-changed routine. Suddenly bugs appear. 
Things don't work as they did before the change. 

Of course, these routines are not at fault, and probably neither is the changed rou
tine. It's just that they don't interface any more-in effect, they don't speak the same 
language. The results expected from that early routine might have only been changed 
slightly, but the change affects several other routines. This is a typical design prob
lem. Not only can it be avoided by careful design in the first place, but certain prob
lems can be anticipated and dealt with at the design level. 

When you are using assembly language, the testing and debugging stages are much 
more stringent than when you are using a high-level (especially an interpreted) lan
guage. Most often, there are no symbolic names to help identify variables. Comments 
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aren't there in memory along with the code, and a program crash (even from a simple 
cause) can wipe the program from memory. This is why the debugging phase of as
sembly language program development nearly always takes longer than the coding. 
Debugging itself can be an enjoyable process-it's akin to solving logic puzzles-but 
it can hardly be termed productive. Twenty lines of code sounds like a small amount, 
and when you consider that you might spend a whole day debugging it, it genuinely 
is a small amount. Thus, the discipline of program design is of paramount importance 
in being a productive programmer. A little discipline will reduce development time and 
result in a higher quality product. 

THE PROGRAM SPECIFICATION 
The first act of discipline within the overall design of a program is to define the 

object of the program. Traditionally, in the mainframe world, this task was undertaken 
by the systems analyst. This person would visit a customer who needed a program. 
The customer would let the analyst know what was wanted, and the analyst, in the 
light of considerable computer experience, would form an overall picture of how the 
computer might be expected to perform this task. The analyst can also cool down some 
of the more exotic expectations an inexperienced user might expect within the budget 
and deadline. Finally, a program specification will emerge. This is handed to a program
mer, who then turns it into code. 

What kinds of things would the analyst need to know? First, results that are re
quired from the program must be determined. Also, the media on which these results 
are to appear needs to be known. They could be on old-fashioned punched cards or 
paper tape, or they could be printed out on custom-designed forms. Even the most com
mon output form-printed copy-can be presented iri different ways: graphs, numbers, 
and charts are all possibilities. Another possibility is video output with user-interaction 
via the keyboard. 

The next item in the program specification is the input. To achieve results, some 
data has to be made available for the computer to work on. Once again, the media can 
be of many forms; magnetic tape and disk are just two. With small amounts of data, 
it might be more efficient to have data input directly to the program from the keyboard 
(or perhaps a mouse). The program will also need to know the input data format. The 
data might be set up in character blocks of a constant length. The data records might 
be of varying lengths with delimiters such as carriage returns denoting the ends. Sepa
rate items of data, such as numbers and strings, might be in fixed character positions 
within the record, or might themselves be separated by delimiters such as commas. 
All these factors will influence the front end of a program. 

The next concern involves actually processing the data. If memory size is an im
portant constraint, small algorithms will be preferred, even at a cost in processing speed. 
Conversely, if a real-time application is being designed, the algorithms used will all 
need to be fine-tuned with an emphasis on speed; sacrifices in memory size will be given 
a lower priority. 

Later, more subtle points arise during a program's specification stage. There might 
be a requirement for a particularly user-friendly interface between the program and 
an inexperienced human operator. The program might have to deal with users who 
range from someone with minimal computer experience to someone who has worked 
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with computers for 20 years. This is the kind of factor that determines the perceived 
quality of a program, as distinct from its efficiency. 

THE PROGRAM DESIGN 
Once a specification has been put together, the program must be designed. Unfor

tunately for impatient programmers, this is not quite yet the time to start writing code. 
The design phase may be undertaken by the same person who came up with the 

specification, or it may be done by the programmer. Obviously, in many-if not most
microcomputing situations, the analyst, designer, programmer, and debugger are all 
the same person-you. 

Program design is often carried out by laying out some kind of graphic representa
tion of the separate parts of a program. The input, output, and error-handling will all 
be there, as well as a breakdown of the "number crunching" to be performed. Prefera
bly, this should all be represented on a single sheet of paper (or graphics screen), but 
eventually, most programs will require more. Even so, the basic building blocks should 
be set out. If any changes are made to the program specification, they can be placed 
in the block diagram and any possible side effects deduced. 

The Flowchart 
A block diagram that is more detailed still will often be used. This is the flowchart, 

and is highly recommended at the outset of a programming venture. Sadly, the flow
chart has recently taken a few knocks from purists of the structured-programming frater
nity. This is because flowcharts tend to encourage thinking in a linear sequence rather 
than in distinct, separate blocks. For assembly-language programmers, however, there 
is little choice in how you perceive the workings of the processor. All digital computer 
processors work in this linear, step-at-a-time fashion with the odd jump to a different 
sequence. (This is called the Von Neuman system.) So, what is anathema to aficionados 
of structured programming is forced by computer architecture and history on the 
machine-code programmer. Use flowcharts. They clarify the procedures and possibili
ties in an algorithm like no other design tool. Once you know the basic shapes used 
in flowcharts (and most can be drawn with just lines, boxes, and diamonds), you can 
jot them down in freehand. The time saved in coding and the overall insight gained 
into any program's workings have even helped build the languages that support struc
tured programming. Figure 9-1 is a list of the more common flowchart symbols, and 
F.ig. 9-2 shows a sample flowchart. 

Other useful techniques can be used at the design stage immediately prior to cod
ing. You have a number of options available that are, as much as anything else, an 
expression of your individual style and preference. These options all involve the struc
ture of your program. As you gain experience in assembly language, you'll be able to 
build up a library of subroutines. These can be coded in such a way that they become 
separately usable modules. Even if you don't have such a library available, a program 
can often be approached in a modular way. The advantage of this is that each module 
can be written and debugged separately. Thus, instead of having to debug a thousand 
bytes of a program containing numerous random errors lurking within its code, you 
can spend 10 sessions working with a hundred bytes at a time. If each module is prop-
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Process Box 

Decision Box 

Input Box 

Output Box 

Fig. 9-1. Some common flowchart symbols. 

erly tested and debugged, it can be eliminated from the debugging stage as the whole 
program is assembled-not only that, but these working modules become candidates 
for a library. 

Structured Programming 
Structured programming is another worthwhile tool to explore, even at the machine

code level. This involves breaking the flow of a program into a small number of known 
constructs. The most important of these are the do/while and if/then/else constructs. 
With this pair, it has been proved possible by computer mathematicians to write any 
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program possible on a Von Neuman machine. Keeping your program to these struc
tures simplifies its design and makes it easier to understand. 

Coding Discipline 
You have one more decision to make before you start coding the program. Two 

terms are commonly used to describe the overall coding discipline used. One is called 
bottom-up programming, the other, top-down. With bottom-up, you start coding at the 
lower levels first and work your way up. For instance, you would write a routine to 
read a keyboard before you'd write the routine that used the keyboard's input. 

START 
PROGRAM 

CALCULATE 
RESULT 

Fig. 9-2. A general flowchart example. 

yes 

PRINT 
RESULTS 

END 
PROGRAM 
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It's the other way around with top-down programming. Here, you program at the 
upper levels first, to ensure the program handles data as per the specification. Then 
you fill in the fine details. If you were using this method, the data-handling routines 
would be written first, with the keyboard data preset somewhere within the program's 
data area (something like using DATA statements in BASIC). Then, when the program 
was sufficiently debugged that it was handling data correctly, the keyboard-input rou
tine would be written. When any unwritten routine is called which is to be filled in 
later, it is called a stub. 

It's a matter of choice as to whether you use bottom-up or top-down techniques. 
If you don't have any idea which you'd prefer, try both and see which best suits your 
style. 

PROGRAM CODING 

At last, you arrive at the coding phase. This is the stage at which all advice flies 
out of the window. Each programmer develops his or her own style, which only adds 
to the enjoyment of this creative art. Apart from a request on behalf of all assembly
language programmers to properly document your code, the rest is at your discretion 
and experience. It might be useful to point out one caveat: always be aware when us
ing coding tricks that they need extra documentation, and might not transfer easily 
to another processor. 

Program Testing 

Program coding is such an enjoyable experience that the rest of the design process 
becomes forgotten; however, even after coding, the design process has to continue. 
The next stage is testing. This is the stage at which the program has been successfully 
passed through the assembly process and is ready to be tried. Most often, a program 
won't work the first time, so it's always wise to use some kind of breakpoint before 
it even starts execution. This is covered in further detail under the topic of debugging. 

Assuming that a program works well enough that it will even accept data, it's time 
to make sure that the data is manipulated correctly. First, this means having some data 
prepared, to test the various building blocks of your program. Bad or erroneous data 
should always be intentionally included, in order to check your program's error-handling 
responses. If any manipulation of numbers is involved, a set of preworked examples 
should be fed in to verify the results. Any data that is on a boundary should also be 
tried. This would consist of very small or very large numbers, especially when they 
are anticipated in the program's coding. Negative quantities should be tried, even if 
they're not supposed to be dealt with by the program. Null data should also be handled 
correctly. Placing an unfamiliar user in charge of your program is always the acid test. 
It is incredible what unforeseen events can be hurled at your program by the uninitiated. 

Finally, it might be possible in a program to automate the testing process. All the 
test inputs just described can be placed in a file on the computer. Then, a patch is made 
to your program, forcing it to accept input from this test file. Output can be redirected 
in the same way, to allow perusal of results that might otherwise fly past on a video 
display. 

Be hard on your program; if you are not, I can guarantee that somebody else will 
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be-intentionally or otherwise. There's always a temptation to finish a program at all 
costs, but "all costs" shouldn't include skipping a thorough test. You might be in the 
middle of writing a section of code and realize that a situation that it hasn't been de
signed to handle can occur. At the very least, you should write yourself a note to test 
that situation as soon as possible. Often, you can update the code before a test renders 
the update mandatory. In the rare case when you have to release "second best" as 
a working version, ensure that the operator of your program knows of any special cases 
to avoid. Although this might sound a little unprofessional, the demands of program
ming in the commercial world sometimes necessitate the release of a flawed program. 
It still takes thorough testing to reveal these flaws, and a known bug is less likely to 
cause a catastrophe than a hidden one. 

Program Debugging 
Debugging is the last phase in which you twist and bend your code with the help 

of the computer. First, it's useful to become adept at scanning a program that has been 
dumped to a printer as a list of numbers. These numbers, usually in octal or hexadecimal, 
can tell you a great deal about where and why your program failed. By getting used 
to such a dump, or ''post mortem,'' you'll sharpen your skills with an interactive debug
ger at a keyboard. 

Start by identifying the sections of code and data. The operating system or assem
bler usually provides some indication as to where your program was loaded in memory 
and where its entry point was. By referring to a printout produced by the assembler, 
you can pinpoint various opcodes and data areas. Naturally, the dump is just numbers 
as seen by the processor, but at least you can map it into pieces you recognize. Then, 
check the data. Often, this will include buffers that contain the last data brought in 
from an input device or data about to be output. This gives you a good general idea 
of what the program was dealing with before being dumped. Uninitialized data is an 
indication of failure in the early stages of a program's execution. Gradually, in the man
ner of Sherlock Holmes, the evidence provided by the program's data can be connected 
with the culprit in the form of an errant piece of code. 

Happily, these days, interactive debugging is the vogue, but the same techniques 
can still be applied. Interactive debugging is much less mentally demanding than at
tempting to digest reams of hexadecimal numbers, and of course, programmers need 
all the help they can get. If you've become an expert at debugging from a hard-copy 
dump, you're likely to be a genius with an interactive debugger. These work by allow
ing you to set breakpoints in your code. 

The breakpoint is simply some type of jump or call to the debugger's entry point. 
When entered, the debugger will display on the screen the current state of the pro
gram (i.e., as it was at the breakpoint). You will be able to display registers or memory 
and, if desired, change the values they contain. There will be some way of setting and 
removing breakpoints at various places in your program, and a way to jump back to 
your code. Then, to debug your program, it's a matter of setting the breakpoint as close 
as possible before the bug occurs. With the program stopped and under control of the 
debugger, you can spot where a wrong jump was taken or an incorrect value used and 
take steps to rectify the problem. 

Where you place your breakpoints is totally up to you. Use your judgement to sug-
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gest a possible trouble spot. If the program still crashes, you simply have to use your 
judgement again until you get control via the debugger before your program goes awry. 

Many de buggers offer spectacular features to aid in the debugging process. Some 
will allow you to single-step through your code to watch registers and memory being 
changed. Others allow single-stepping to occur automatically until a preset condition, 
such as a particular number being placed at a known memory location, is met. Tracing 
is allowed by some debuggers. During a trace, each instruction is printed out as it is 
executed. The contents of the registers are also displayed. Then it's back to poring 
over the printout to trace where a fault occurred. 

The most sophisticated de buggers allow you to specify a symbol table area in mem
ory. This symbol table will consist of addresses and symbols used in your assembly
language source code. Whenever the debugger encounters an address that is stored 
in the symbol table, it will display the symbol instead of the absolute address. This 
way, you can disassemble or single step a machine-code program, and the debugger 
will provide output that closely resembles the original source code. A scan through 
the features of different de buggers will give you some idea of the kind of options avail
able. Debugging is next in importance to coding in the programmer's art. 

DOCUMENTING THE PROGRAM 
Finally ... At last ... At the very end ... You have a working program. You 

can release it to the outside world and feel safe in the knowledge that your hard work 
and diligence is reflected in a quality program. Unfortunately, there's more yet! You 
can't just give your program to the user and expect him or her to remember your ev
ery step as you demonstrated it. You're going to have to document it first. This is not 
as easy as it might sound. You're in a unique position as the programmer of a finished 
project. You know better than anyone else on the planet how your software functions. 
You know its every intricacy and detail. 

Unfortunately, you probably know your program so well you might not do a good 
job with its documentation. You might take for granted the fact that you hit ENTER 
at the end of a line or close a disk-drive door before reading a disk-but look out for 
the neophyte. Alternatively, you might be targeting your program at a highly computer
literate operator, so a minimum of hand-holding is required. But still beware-you have 
worked on your program for so many weeks, you might easily overlook documenting 
something that seems to be obvious. 

Your documentation should state what the program is supposed to do, with what 
data. It should specify any error conditions built in and what restart procedures, if any, 
are available to rescue work already accomplished. Each command in an interactive 
menu should be thoroughly explained. There should be the name of someone to con
tact if a serious problem occurs. You should include a section that gives an overview 
in scant detail of all commands and errors. That way, you have a fact sheet about your 
program that can be used by a new user of your program who is not yet familiar with 
your style. 

Spend a reasonable amount of time on your documentation. Often, it acts as an 
ambassador for your work. If it's badly written, terse, or full of grammatical errors, 
a user will probably suspect the same of your code and the care you put into writing it. 
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MAINTAINING THE PROGRAM 
You could be forgiven for thinking that providing documentation was the end of 

the program design process; however, there is one last stage that you might hope won't 
arise, but should be no big surprise if it does. That stage is program maintenance, which 
includes software upgrades. 

If a user decides that a new feature should be added to a program, there's usually 
no reason why it should not be added. You should be the first "port of call" to accom
plish this. As all too often happens, a user may-heaven forbid-find a bug in your pro
gram, or an unforeseen change in the data might require the program to be changed 
in order to handle it. Once again, it's always you who is likely to be the first source 
for maintaining or upgrading your own work. 

By the time the need for maintenance occurs, many months might have passed 
since you wrote the software. Now is your chance to be the victim of your own coding 
techniques and documentation. If it's not you who does the maintenance, then the next 
programmer will be in an even more vulnerable position. The moral is this: very few 
programs will ever be written and left as they are. Program maintenance is a fact of 
life. All the foregoing program design processes will manifest themselves in front of 
your eyes before too long. Previous bad habits in coding and documentation will take 
their revenge during the debugging stage. 

This chapter might have made it seem like programming should be done solely 
by a monastic order of disciplinarians, but it's only to make a point. All that's really 
required is a modicum of common sense rather than a severe disciplined approach. That 
way, you can be as carefree and quality-conscious as a programmer as an artist is in 
any other artform. 
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Alternatives to 
Assembly Language 

Since the first chapter, the basics of assembly language through the 68000 microproces
sor to the Amiga itself have been covered. What comes after this? First, you have to 
get an assembler and debugger. Without an assembler, only the most trivial machine
code routines are possible. Without a debugger, correcting errors in programs will be 
impossible at worst and a nightmare at best. To take advantage of that rich and promis
ing Amiga software interface, to save much work, and to improve source code quality, 
you should acquire equates files containing the layout of the system structures and their 
various possible contents. All these constituents come under the heading of an assembly
language development system. Any worthwhile system will already contain these parts. 

A reference source is required for the library routines available to interface with 
the Amiga operating system. Because so many library routines are available for use, 
and the existing routines each have different parameter-passing requirements, it's im
possible to use any but the most commonly-used ones. The ROM Kernel Manual pub
lished on behalf of Commodore is the bible on this subject. 

Once you're comfortable with the instruction set of the 68000 and the system 
libraries of the Amiga software interface, you're as armed and ready to go as any soft
ware developer can be. It's up to your imagination and skill from that point on. 

In a book on assembly language, it's difficult to allot a fair amount of space to other 
programming languages; however, not to do so would be denying their importance, 
which is considerable, even to an assembly-language programmer. If the effort of pro
gramming constantly in assembly language becomes too time-consuming, there are al
ternatives that are attractive to machine-code programmers. High-level languages can 
be used in conjunction with assembly language to greatly increase productivity. A Pascal 

110 



compiler, for example, could be recruited. This would be used to compile Pascal source 
code into a machine-code program. This might be done via an assembly-language in
termediate program or straight from compiler to machine code. 

A language such as Pascal gives you the advantage of programming at a high level 
using structured-programming constructs such as do/while and if/then/else. These con
structs are known to encourage logically clear thinking and, thus, more accurate code. 
The assembly language output rendered by a compiler can then be improved upon to 
yield source code approaching the quality of a human programmer. Remember, though, 
that no Pascal or other compiler-no matter how sophisticated-can produce assembly 
language that runs with anything like the same speed or efficiency as that produced 
by a human programmer. 

The very process of compilation results in the generation of synthetic routines that 
are built one on top of another. These routines are in complete isolation from each other, 
often resulting in code that lacks insight and is easily optimized by hand. With a li
brary of routines written in high-level source code, it's possible to manufacture a large 
volume of assembly-language software that even though not high in efficiency, will work 
almost as well as a hand-written piece of machine code. 

Everything you've just read about Pascal applies to C. Both languages share many 
similarities and offer you the ability to use structured code to help you write programs 
that are more likely to work the first time. 

Because of its power, Cis fast becoming the language of choice for many software 
professionals. One thing particularly in its favor is the fact that it's easy to visualize 
the machine code that is being generated by the compiler. C doesn't impose too many 
rules on programmers and allows for many of the techniques used in assembly lan
guage (and many of the abuses). Using C, it is possible to write a program that, when 
compiled, looks similar to what might have been written directly in assembly language. 
This fact alone assures its success among many programmers who would otherwise 
not use a high-level language. In fact, among its advocates are Commodore-Amiga, 
whose programmers appear to highly favor the use of the C language. Evidently, much 
of the Amiga operating system was written in C. A C compiler for the Amiga was in 
use at the same time as the assembler, testifying to its importance as a development 
tool. All the library routines on the Amiga can be called from C just by using a library 
routine name followed by its parameters in parentheses. A special interface routine 
loads these parameters into the correct registers for use by the machine code library 
routines. Note, however, that even with such a sophisticated language, the ultimate 
interface is at the machine-code level. 

If you want to take advantage of the huge software base of science and engineer
ing programs that already exists, Fortran might be more applicable than either Pascal 
or C. Business-oriented programmers can use the most widely-used computer language 
in the world-COBOL. Because they are compiled into machine code, all these languages 
represent an evolutionary next step after assembly language, but the skills acquired 
in learning and using assembly language are required before the fullest use can be made 
of a compiler's output. With these skills, you can rearrange code to make whatever 
improvements are not possible at the compiler level. Portions can be totally rewritten 
if necessary, and the compiler will still have done most of the hard work in providing 
the body of the code. Thus, you can utilize a compiler for the bulk of the code and 
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then use your assembly-language skills in fine-tuning the results. Obviously, this can
not be done without sound knowledge and expertise at the machine-code level. 

The use of a higher-level language is entirely at your discretion. You might be quite 
happy programming away in machine code, but it might be that for a particular proj
ect, your productivity will increase as a result of using higher-level software tools, such 
as compilers and medium-level languages. Unless you become an assembly-language 
purist (and there are already enough computer elitists), the logical next step is a high
level language, but with your programming roots still firmly embedded in the founda
tions of assembly language. 

A major advantage of using a high-level language is that you can easily build up 
a large library of modules. This can also be done at the assembly-language level, but 
the library will contain processor-specific modules. A library of Z-80 routines, for ex
ample, has to be completely rewritten for use on a 68000, but the same routines in 
a C library only have to be recompiled on a different compiler to produce code native 
·to any particular processor. 

Here's an example of how low-level code might be generated from some source 
code written in C: 

if(>: > 1 ) y:::2; else IJ=3; 

MOVE >:,DO 

CMP "1,00 

BLS .1021 

MOl..-1 FC~ «2,y 

BRA .1022 

.:1.021: MOVEQ H3,y 

.1.022: 

This example shows that even though the code was written in C (and looks almost as 
high-level as BASIC), the assembly language generated by the compiler is just about 
the same as would have been written by a human programmer. 

Using a high-level language, it's almost as if the code were generated from the 
comments column of the assembly-language source code. This is how, as you achieve 
familiarity with a compiler, it becomes possible to anticipate the code that will be gener
ated by a compiler. You can then control it by manipulating the high-level code. In 
effect, you take one step back from the assembler, but still determine what appears 
as assembly source code. Almost as an added bonus, the high-level language imposes 
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its structure on your thinking, which allows you to see the flow of your logic more clearly. 
It's as if you were taking a few steps back from a painting while it was still in progress. 

None of this high-level language discussion is meant to detract from the art and 
science of assembly-language programming. Rather, its use should be regarded as a 
luxury best utilized only by the most competent machine-code programmers. Anyone 
else programming in a high-levellanguage is totally at the mercy of the compiler. With
out an awareness of the final assembly phase, it's almost as if the resultant machine
code program appears by magic. 

The step towards a high-level language is by no means mandatory. Many extremely 
fine pieces of software have been written purely in assembly language, but bear it in 
mind that if you start feeling frustrated by the rate at which you're producing debugged 
and working code, it might be time to start thinking about using a compiler. It is hard 
to imagine how long it would have taken to program the well-known Unix operating 
system if most of it hadn't been written in C-and this even includes the C compiler 
running under Unix. 

Whatever your next step, take it only after you're fully confident about the lan
guage of the computer processor. Although this book focuses on the 68000 chip, any 
processor will suffice for this first step. It's when you've mastered the low-level tech
niques that the high-level ones truly open up to you-and you still retain the mystique 
and respect enjoyed by assembly-language programmers in the upper echelons of pro
gramming society. 
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Two Simple 
Programming Examples 

At long last, the chance to put all that you learned in the preceding chapters into prac
tice has arrived. This chapter describes two simple assembly-language programs writ
ten specifically for the Amiga to demonstrate the methods used to interface with the 
libraries. The following examples assume you are in a CLI window and have ASSEM 
and ALINK installed in the c directory. The source, object, linked output, and lib/am
iga.lib files should also be in the current directory. 

THE TEXT PROGRAM 
The first program, shown in Fig. 11-1, is just about as simple a program as you 

can write for the Amiga. It simply checks to see if it has been called from the com
mand line interface and outputs a line of text if it has been. If it was called from the 
Workbench, the program detects this and exits without doing anything. Because the 
message is printed using the DOS library call to Write, it can be redirected to a file 
or device using the standard Amiga method (using the > character followed by a file
name). The program ends by returning to the CLI as soon as the message has been 
output. As long as the stack pointer is not changed from its value at the start of the 
program, a simple rts opcode is sufficient to ensure a graceful return to the CLI. For 
simplicity, a call to CloseLibrary has been omitted. This is normally used before end
ing any program. The second example shows how this call should have been performed. 

The source code should only take 10 minutes or so to type in. To try out this ex
ample, enter the text into a file, which should be named text.asm. When you've typed 
it in, you should assemble and link it. The easiest way to do this is to type the follow-
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Fig. 11-1. The Text program. 

;text.asm 

************************************************************************ 
* 
* EXTERNAL REFERENCES 
* 
************************************************************************ 

xref 
xref 
xref 
xref 
xref 

AbsExecBase 
-LVOFindTask 
-LVOOpenLibrary 
-LVOOutput 
-LVOWrite 

************************************************************************ 
* 
* PROGRAM CODE 
* 
****************************************************~******************* 

move.l 
suba.l 

AbsExecBase,a6 
al,al 

LVOFindTask(a6) 
d0,a4 

;get Exec library base pointer: 
;zero register al 

jsr 
move.l 

moveq 
tst.l 
beq.s 

bsr.s 
tst.l 
beq.s 

move.l 
jsr 

move.l 
lea 
move.l 
moveq 
jsr 

moveq 
exit 

rts 

opendos 
lea 
move.l 
jsr 
rts 

it20,d0 
140(a4) 
exit 

opendos 
dO 
exit 

d0,a6 
_LVOOutput(a6) 

dO,dl 
msg,aO 
aO, d2 
UO,d3 
_LVOWrite (a6) 

itO,dO 

doslib,al 
itO,dO 
_LVOOpenLibrary(a6) 

;get the address of our task 
;move it to a4 

;exit number if not CLI 
;see if task number = 0 
;if so, we're not in CLI 

;attempt to open DOS library 
;got a library pointer? 
;abort if no DOS 

;DOS Library pointer to a6 
;get output handle 

;move output handle to dl 
;text-string address to aO 
;text pointer to d2 
;text length to d3 
;write to output 

;return code 

;point al at "dos.library" 
;use any dos version 
;open the DOS library 

************************************************************************ 
* 
* PROGRAM DATA 
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* 
************************************************************************ 

msg de .b 
doslib dc.b 

end 

'Hi there! ',$0a 
'dos.library',O 

ing two lines into a file, and save it under the name text.exec: 

assem text.asm -o text.obj 

.:dink te~d. obj to te::d lib l i b./.:<,ft) i ga. lib 

Then type: 

execute text.exec 

This will automatically run the assembler and then the linker. If an error occurs in 
either, check the source code for typos, and ensure that the text. exec file appears as 
above. 

If you wish, you can skip the exec stage by typing each of the above two lines 
separately; these lines will manually invoke the assembler and then the linker. When 
writing longer, less trivial programs, it's better to use an execute file to ensure that 
the assembler and linker are called properly every time you assemble and link. When 
the process runs to completion, type the word "text" to see the message displayed. 
If you create an icon for the file, as in the next example, you'll find that the program 
jumps back to the Workbench if you run it from there. The code to do this appears 
right after the FindTask call at the start of the source code. 

Notice that the linker is instructed to use a library called lib/amiga.lib, which is 
specified as one of its parameters. This causes the linker to scan that library for any 
unresolved references. There are five lines declaring references to externally defined 
objects, so the linker will look for them in lib/amiga.lib. No routines containing any 
code are loaded from this file-just the numerical values of _A.bsExecBase and the 
_L VO offsets. You can prove that these are no more than numerical values by replac
ing them with actual numbers and assembling the program without using amiga.lib. 
This is only recommended as an exercise; you should normally link using the proper 
method to ensure that the library offsets match those in the executable library. 

First, remove the five xref lines that are before the program code. (You can simply 
insert semicolons at the start of each line; the semicolons cause them to be treated as 
comments). This saves the linker from having to resolve those references. Now replace 
_A.bsExecBase with 4, _L VOFindTask with - 294, _L VOOutput with - 60, 
_LVOWrite with -48, and _LVOOpenLibrary with -552. Assemble the program 
as before, but when you link, use the command: 

alink text.obj to text 
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----··------··-------------

The program is now assembled and linked without any external references. It will 
still run exactly as before, but it's the absolute library offsets you typed into the source 
code. (This assumes your offsets are the same as those in release 1.2 of the software.) 

THE GADGET BOX PROGRAM 
The second program shown in Fig. 11-2, is also fairly simple and was designed 

to be that way. Its only real use is as an example of how to program the Amiga using 
various library calls at the machine code level. Thus, the code is kept straightforward, 
with no software tricks in sight. The whole thing has been kept as illustrative as possible. 

The program will put up a window on the screen that looks just like an ordinary 
Amiga window. Included along with the window itself are a close box (which, unsur
prisingly, allows the window to be closed) and three gadgets. For no other reason than 
sheer variety, each gadget is different: the first one is a medium sized square, the sec
ond one is a triangle, and the third one is a small square. The program deals with the 
clicking of any one of these gadgets in a different way for each one. Clicking the large 
square-which is labeled GO-causes a new title to appear at the head of the gadget 
window. The second gadget-labeled Gl-upon being clicked causes its color to cycle 
through the current Workbench colors as selected from the Amiga's Preferences util
ity. The colors cycle from white to black to orange to blue. If you've changed these 
colors using Preferences, they will cycle through the colors you've set up. Notice that 
the last color is always the color of the background, so it will be invisible until you 
press the mouse button over its selectable area. The final control, the small gadget 
labeled G2, merely causes a short flash to be displayed on the screen of the Amiga. 

Fig. 11-2. The Gadget Box program. 

;gadget.asm 

************************************************************************ 
* 
* 
* 

INCLUDE FILES 

************************************************************************ 

nol 

INCLUDE "exec/types.i" 
INCLUDE "exec/alerts.i" 
INCLUDE "exec/ports.i" 
INCLUDE "exec/tasks.i" 
INCLUDE "libraries/dos.i" 
INCLUDE "libraries/dosextens.i" 
INCLUDE "intuition/intuition.i" 
INCLUDE "workbench/startup.i" 

************************************************************************ 
* 
* EXTERNAL REFERENCES 
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* 
************************************************************************ 

xref 

xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 

AbsExecBase 

LVOAlert 
-LVOCloseLibrary 
-LVOCloseWindow 
-LVODebug 
-LVODisplayBeep 
-LVOFindTask 
-LVOForbid 
-LVOGetMsg 
-LVOinput 
-LVOOpen 
-LVOOpenLibrary 
-LVOOpenWindow 
-LVOOutput 
-LVORefreshGadgets 
-LVOReplyMsg 
-LVOSetMenuStrip 
-LVOSetWindowTitles 
-LVOWait 
-LVOWaitPort 
-LVOWrite 

************************************************************************ 
* 
* PROGRAM CODE 
* 
************************************************************************ 

list 

move.l 
movea.l 
move.l 

suba.l 
jsr 
movea.l 
bsr 

tst.l 
beq 

a7,initialSP 
AbsExecBase,a6 

a6,ExecBase 

al,al 
LVOFindTask (a6) 

dO~a4 
openDOS 

pr CLI (a4) 
WBStart 

;initial task stack pointer 
;get exec library base 
;save exec lib base 

;set al == 0 
;get the address of this task 
;task address to a4 
;attempt to open DOS ~~orary 

; are we running under Workbench? 
;ok if so 

************************************************************************ 
* CLI Code 
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movea.l 
jsr 
move.l 
lea 
move.l 
moveq 
jsr 

moveq.l 
bra 

dO,a6 
_LVOOutput (a6) 
dO,dl 
msg,aO 
aO,d2 
tmsglen,d3 
_LVOWrite (a6) 

uo,oo 
exit 

;set DOS library pointer 
;get output handle 
;handle to dl for Write 
;point to output message 
;message pointer to d2 
;message length to d3 
;write message to output 

;failure code 
;return to CLI 



----~~--~--------

************************************************************************ 
* Workbench Code 

WBStart 

bsr openint 

bsr waitmsg 
move.l dO,returnMsg 

movea.l IntBase,a6 
lea NewWind,aO 
jsr LVOOpenWindow(a6) 
move.l dO,windptr 

movea.l dO,aO 
lea MenuO,al 
jsr _LVOSetMenuStrip(a6) 

get_event 
movea.l windptr,aO 
movea.l wd UserPort(aO),aO 
move.l aO~- (a7) 
moveq tO,dl 
move.b MP SIGBIT(aO),dl 
moveq U~dO 
asl.l dl,dO 
movea.l ExecBase,a6 
jsr _LVOWait (a6) 

movea.l (a7)+,a0 
jsr _LVOGetMsg (a6) 
movea.l dO,al 
move.l im_Cla::ss(al),d4 
move.w im Code(al),d5 
movea.l im-IAddress(al),a2 
jsr _LVOReplyMsg(a6) 

movea.l IntBase,a6 
cmpi.l #CLOSEWINDOW,d4 
beq bye 

cmpi.l #MENUPICK,d4 
bne.s chkgadg 
cmpi.w #MENUNULL,d5 
beq.s get event 
andi.w #$7ff,d5 

cmpi.w f%100000,d5 
beq.s bye 

;Only menu item left is tO (reset) 

lea 
bsr.s 
lea 
movea.l 
moveq 
bra.s 

wtitle,al 
set ttl 
Gadgetl,aO 
gg GadgetRender(a0),a2 
U~dO 
set col 

;open intuition library 

;wait for start message 
;save message for later 

;use intuition library base 
;address of new window struct 
;open the window 
;save ptr to window structure 

;window structure pointer to aO 
;ptr to menu structure 
;put up menu 

;open window structure ptr 
;UserPort addr to aO 
;save it for later 

;use signal bit allocated 
;set bit 0 in dO 
;shift to allocated bit 
;use exec library base 
;wait for signal 

;restore UserPort addr to aO 
;get IDCMP message 
;message pointer to al 
;class 
;code 
;address in case gadget 
;tell exec we got message 

;Ready to use intuition lib 
;request to close window? 
;exit if so 

;picked menu? 
;check gadgets if not 
;no menu item chosen? 
;next event if not 
;extract item/menu f 

;item 1/menu 0? 
;quit if so 

;point to original title 
;set title 
;point to gadget 1 
;border ptr to a2 
;original gadget 1 color 
;replace old color 
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chkgadg 
cmpi.l 
bne.s 
move.w 
beq.s 
cmpi.w 
beq.s 

#GADGETUP,d4 
get event 
gg GadgetiD(a2),d0 
chgttl 
11, dO 
chgcol 

;has a gadget been picked? 
; if not, it's an unknown message 
;get id of gadget 
;if zero, change title 
;gadget id = 1? 
;change color if so 

;only gadget left is id 2 

suba.l 
jsr 
bra 

chgcol 
movea.l 
movea.l 
move.b 
addq 
andi.b 

set col 
move.b 
movea.l 
suba.l 
jsr 
bra 

chgttl 
lea 
bsr.s 
bra 

set ttl 
movea.l 
movea.l 
jmp 

;close down 
bye 

movea.l 
movea.l 
jsr 
moveq.l 

exit 
movea.l 
move.l 

;close libraries 
movea.l 
move.! 
beq.s 
movea.l 
jsr 

1$ 
move.! 
beq.s 
movea.l 
jsr 

2$ 
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aO,aO 
LVODisplayBeep(a6) 

get_event 

a2,a0 
gg GadgetRender(a0),a2 
bd-FrontPen(a2),d0 
u-;do 
f3,d0 

dO,bd FrontPen(a2) 
windptr,a1 
a2,a2 

LVORefreshGadgets(a6) 
get_event 

newtitle,a1 
set ttl 
get_event 

;set aO = 0 
;flash the screen 
;loop around for next event 

;gadget ptr to aO 
;border ptr to a2 
;get current gadget color 
;increment color register f 
;mask out color bits 

;replace new color 
;setup window ptr 
;set a2 = 0 
;redisplay all gadgets 
;get next event 

;ptr to new title 
;set title 
;loop to get next event 

windptr,aO ;ptr to window 
t-l,a2 ;don't change screen title 
_LVOSetWindowTitles(a6) ;change title 

IntBase,a6 
windptr,aO 

LVOCloseWindow(a6) 
10,d0 

initialSP,a7 
d0,-(a7) 

ExecBase,a6 
DOSBase,dO 
1$ 
d0,a1 
_LVOCloseLibrary(a6) 

IntBase,dO 
2$ 
dO,a1 
_LVOCloseLibrary(a6) 

;use intuition library base 
;pointer to open window 
;close window 
;Successful return code 

;restore stack pointer 
;save return code 

;use exec libraries 
;DOS library loaded? 
;skip close if DOS not open 
;lib base into a1 
;close DOS 

;intuition library loaded? 
;skip if intuition not open 
;lib base into a1 
;close intuition 



move.l 
beq.s 

;return startup message 

jsr 
movea.l 
jsr 

3$ 
move.l 
rts 

returnMsg,dO 
3$ 

to parent 

LVOForbid (a6) 
returnMsg,al 
_LVOReplyMsg(a6) 

(a7)+,d0 

- ----------------------------

;started from workbench? 
;skip if from CLI 

;so workbench won't UnLoadSeg 
;startup message pointer 
;reply to initial message 

;restore success code 
;back to operating system 

************************************************************************ 
noDOS 

ALERT 
moveq.l 
bra.s 

(AG QpenLib!AO DOSLib) 
UOO,dO -
exit 

;display alert box 
;error exit code 
;exit program 

************************************************************************ 
* Get the message that workbench sends to start us off. 
* Called with task id in a4. 

waitmsg 
lea 
jsr 
lea 
jsr 
rts 

pr MsgPort(a4),a0 
LVOWaitPort (a6) 

pr MsgPort(a4),a0 
_LVOGetMsg (a6) 

;our process base 
;await message 
;our process base 
;pick up message 

************************************************************************ 
* Qpen the DOS library. 

openDOS 
lea 
move.l 
jsr 
move.l 
beq 
rts 

DOSName,al 
#LIBRARY VERSION,dO 

LVOQpenLibrary(a6) 
dO,DOSBase 
noD OS 

;point to DOS library name 
;use included library version 
;open DOS library 
;save DOS library base 

************************************************************************ 
* Qpen the intuition library. 

openint 
lea 
move.l 
jsr 
move.l 
rts 

IntName,al 
#O,dO 

LVOQpenLibrary(a6) 
dO,IntBase 

;point to intuition lib name 
;use any version 
;open intuition library 
;save library base 

**•********************************************************************* 

DATA 

*****~****************************************************************** 

ExecBase 
DOSBase 
IntBase 

dc.l 
dc.l 
dc.l 

0 
0 
0 

;space for exec library base 
;space for DOS library base 
;space for intuition lib base 
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initialSP 
returnMsg 

windptr 

NewWind 
LeftEdge 
TopEdge 
Width 
Height 
DetailPen 
BlockPen 
IDCMPFlags 
Flags 
FirstGadget 
CheckMark 
Title 
Scren 
BitMp 
MinWidth 
MinHeight 
MaxWidth 
MaxHeight 
Type 

GadgetO 

borderO 

gOxy 

gOitxt 
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dc.l 
dc.l 

dc.l 

equ 
dc.w 
dc.w 
dc.w 
dc.w 
dc.b 
dc.b 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.w 
dc.w 
dc.b 
dc.b 
dc.b 
dc.b 
dc.l 
dc.l 

dc.w 
dc.w 
dc.w 
dc.w 
dc.w 

0 
0 

0 

* 
100 
50 
200 
60 

;saved initial stack pointer 
;saved startup message pointer 

;space for opened window ptr 

;NewWind = structure address 
;window initial coordinates 

-1 ;default pen 
-1 ;default pen 
CLOSEWINDOW!GADGETUP!MENUPICK 
WINDOWCLOSE!SMART REFRESH!ACTIVATE!WINDOWDRAG 
GadgetO ;pointer to first gadget 
0 
wtitle 
0 
0 
0 
0 
0 
0 
WBENCHSCREEN 

Gadgetl 
20 
20 
40 
20 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
borderO 
0 
gOitxt 
0 
0 
0 
0 

0 
0 
2 
0 
RP JAMl 
5-
gOxy 
0 

0,0 
0,19 
39,19 
39,0 
0,0 

;pointer to window title 

;pointer to next gadget 
:left edge 
;top edge 
;width 
;height 
:flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

:left edge 
;top edge 
;front pen 
;back pen 
;draw mode 
:f of coords 
;pointer to 1st coord 
;pointer to next border 

;gadget coordinate list 



Gadgetl 

borderl 

glxy 

glitxt 

Gadget2 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.w 
dc.w 
dc.b 
dc.b 
dc.b 
dc.b 
dc.l 
dc.l 

dc.w 
dc.w 
dc.w 
dc.w 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 

2 
0 
RP JAMl 
10 
7 
0 
gO txt 
0 

Gadget2 
70 
20 
40 
20 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
borderl 
0 
glitxt 
0 
0 
1 
0 

0 
0 
1 
0 
RP JAMl 
4 
glxy 
0 

0,19 
39,19 
20,0 
0,19 

1 
0 
RP JAMl 
10 
21 
0 
gltxt 
0 

0 
120 
30 
24 
10 
GADGHCOMP 
RELVERIFY 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
; font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;left edge 
;top edge 
;front pen 
;back pen 
;draw mode 
;i of coords 
;pointer to 1st coord 
;pointer to next border 

;gadget coordinate list 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;pointer to next gadget 
; left edge 
;top edge 
;width 
;height 
;flags 
;activation flags 
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border2 

g2xy 

g2itxt 

MenuO 

MenuitmO 
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dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.w 
dc.w 
dc.b 
dc.b 
dc.b 
dc.b 
dc.l 
dc.l 

dc.w 
dc.w 
dc.w 
dc.w 
dc.w 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.w 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.b 
dc.l 
dc.w 

BOOLGADGET 
border2 
0 
g2itxt 
0 
0 
2 
0 

0 
0 
3 
0 
RP JAMl 
5 
g2xy 
0 

0,0 
0,9 
23,9 
23,0 
0,0 

3 
0 
RP JAMl 
2 
2 
0 
g2txt 
0 

0 
50 
0 
60 
0 
MENUENABLED 
MenuName 
MenuitmO 
0,0,0,0 

;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

; left edge 
;top edge 
;front pen 
;back pen 
;draw mode 
;t of coords 
;pointer to 1st coord 
;pointer to next border 

;gadget coordinate list 

;front pen 
;back pen 
;draw mode 
; left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;ptr to next menu structure 
;Left edge 
;Top edge 
;Width 
;Height 
;Flags 
;Pointer to menu name 
;Pointer to first item 
;internal use 

Menuitml ;ptr to next menu item 
0 ;Left edge 
0 ;Top edge 
95 ;Width 
11 ;Height 
ITEMTEXT!COMMSEQ!ITEMENABLED!HIGHCOMP ;Flags 
0 ;Mutual Exclude 
itemnameO ;Item Fill 
0 ; Select Fill 
1 r 1 ; Command 
0 ;Sub Item 
0 ;Next Select 



itemnameO 

Menuitml 

itemnamel 

MenuName 
iOtxt 
iltxt 
gO txt 
gltxt 
g2txt 

wtitle 
newtitle 

IntName 
DOSName 

msg 
msglen 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.b 
dc.l 
dc.w 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

dc.b 
dc.b 
dc.b 
dc.b 
dc.b 
dc.b 

dc.b 
dc.b 

dc.b 
DOS NAME 

dc.b 
equ 

2 
0 
RP JAMl 
2 
2 
0 
iOtxt 
0 

;front pen 
;back pen 
;draw mode 
; left edge 
;top edge 
;font ptr (dflt) 
;text pointer 

- ---------~-----

;ptr to nxt txt structure 

0 ;ptr to next menu item 
0 ;Left edge 
12 ;Top edge 
95 ;Width 
11 ;Height 
ITEMTEXT!COMMSEQ!ITEMENABLED!HIGHCOMP ;Flags 
0 ;Mutual Exclude 
itemnamel ; Item Fill 
0 ; Select Fill 
• q' ; Command 
0 ;Sub Item 
0 ;Next Select 

2 
0 
RP JAMl 
2 
2 
0 
iltxt 
0 

'Menu',O 
'Reset',O 
'Quit ',0 
'GO',O 
'Gl I' 0 
'G2 I' 0 

'Some Gadgets',O 
'New Title',O 

'intuition.library',O 

; front pen 
;back pen 
;draw mode 
; left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;Menu title 
; first item text 
;second item text 
;first gadget name 
;second gadget name 
;third gadget name 

;initial window title 
;alternative window title 

;intuition library name 
;DOS library name macro 

'This program must be run from the Workbench.',$0a 
*-msg 

end 

To keep the assembly source code simple, all the structures for the window, the 
gadgets, and the text have been defined using the assembler de directive, which is used 
to define a constant. Normally, structures such as these would have been defined us
ing the type macros defined in the types.i include file. For the purposes of illustration, 
the regular assembler directives were used so no ambiguity would arise as to the length 
or purpose of each constant defined within a structure. 
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A large proportion of this program (and the calculator program in Chapter 13) is 
comprised of data structures. If you have an editor that allows it, you can save time 
and increase accuracy if you enter a template of each structure just once and then dupli
cate it each time it is needed in the source code. When all structures are in place, step 
through each constant definition and set each constant to its proper values. This is a 
time consuming process, but it is less so than entering each structure one at a time. 

The menu that is available is very simple. It contains only two items, reset and 
quit, either of which can be selected using the ALT/r and ALT/q key combinations 
respectively. The reset option puts the window back the way it was at the start of the 
program (original title and color of second gadget). The quit option follows the same 
path that is taken if the pointer is clicked in the window's close box-namely back to 
the Amiga Workbench. The sequence of steps you should follow when assembling the 
gadget program is the same as in the first example. The gadget.asm file (the source 
code) is submitted to the assembler and the resultant gadget.obj file is submitted to 
the linker, which produces an executable gadget file. Instead of going through this se
quence one step at a time, you can automate it by creating a file called gadget.exec 
containing the following lines and then inputting it to the execute application: 

assem gadget.asm -c W160000 -i include -o gadget.obj 

.:;dink g.~dget. obj tc• g.adget lib l i b/.aftli ga. lib 

These lines tell execute to invoke the assembler with the gadget.asm source file and 
then pass control to the linker if no errors occur. If there are no errors, the linker will 
be fired up to produce the final gadget program from the output of the assembler. The 
assembler has two extra parameters specified in this example: the - c Wl60000 op
tion, which tells the assembler to use a workspace of 160,000 bytes, and the - i in
clude parameter, which tells it to look for included files in the directory called include. 
The extra workspace is required because all the included equates use up a great deal 
of room in memory. Note that the directory specifying the include files is assumed to 
be relative to the current working directory. 

When the program is running, each event of interest to it is detected by picking 
up a message from the executive. To do this, the program informs exec which signal 
it is interested in and then goes to sleep by doing a call to the Wait routine. The pro
gram has nothing to do until such a signal arrives, so this action is appropriate, it frees 
the Amiga to execute other tasks within its memory. 

When the mouse is pressed, causing an event related to the program, exec sends 
a signal to wake it up. The program can then fetch the message that Intuition will have 
sent. This message is in the form of a structure containing items of information per
taining to the event that just occurred. On return from the call to GetMsg, register 
dO will contain a pointer to this message structure. The program can then extract the 
information it needs from the structure and return the memory area containing the mes
sage for further use by the operating system. This is achieved with the ReplyMsg call. 
Note that a similar message is sent from the Workbench, before the program can start 
executing. This is the first thing the program waits for after opening the Intuition library. 

Three items from within the message are all that is needed to find out which event 
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caused a signal to be sent to the program. First, the class of the message is required, 
the class determines whether a menu, gadget, or close window has been selected. Sec
ond, if a menu was chosen, the code field within the message will contain the item and 
menu number picked. Third, the address field of the message will point to the struc
ture of any gadget that might have been selected. Thus, if a gadget event occurs, the 
program can check to see which gadget was selected and take action accordingly. 

The program is easily modified, and you are encouraged to do just that. Modifying 
programs is an excellent way to gain confidence in manipulating the Amiga environ
ment. For instance, a new gadget could be added, or perhaps one of the existing ones 
moved somewhere else. Try adding a new menu item and after that works, add some 
code to deal with it. 

When the program is successfully assembled, you'll need to assign an icon to it, 
because you have to start it from the Workbench. To do this, use the program !conEd 
on the Workbench disk. You'll need at least one icon to be already available for this 
to work. These are stored in files with an extension of .info. Thus, the icon for the 
gadget program will be stored in gadget.info. 

When !conEd has started and has at least one icon loaded into a display frame, 
you can graphically alter it as desired. When your icon is designed, select the menu 
option to save it to disk. A window will appear asking for more details. First, select 
the icon name box and enter the name "gadget." (If the gadget program is on the ex
ternal drive, you should specify "dfl:gadget.") Then click the mouse on the gadget 
entitled "Frame and Save." This allows you to draw a frame around your icon, which 
determines its size. You can then save the icon, after which it will appear when you 
open the window containing the gadget program. Opening this icon will start the gadget 
program. 

When viewing a "finished" program such as this, the tendency is to think it was 
created in its entirety out of thin air and worked the first time. Unfortunately, that's 
not how programming goes-there were numerous crashes between the first version 
and the version published here. So don't feel too bad when you witness your first pro
gram crash-it's just part of the programming process. 

While writing this program, extensive use was made of the _L VODebug routine 
to help in pinpointing bugs. I placed the debug call immediately in front of any errant 
routine, if I knew which routine was causing a crash. Alternatively, if all else failed 
and I didn't have a clue as to what was going on, I would place the call at the very 
beginning of the program. This allowed me to single-step the program until the prob
lem occurred. Then I knew that it was the last encountered routine that was at fault. 
I could then either restart the program and set a breakpoint prior to the offending code, 
or reassemble the program with the _L VODebug routine just ahead of the problem. 
A check of all the parameters in the registers would follow, until one that didn't make 
sense was found. Once or twice this involved trial and error attempts. 

As was pointed out previously, assembly-language program development is cer
tain to incur a few crashes before a finished result is produced. Some of the functions 
in the ROM Kernel Manual are described more clearly than others. It's almost a cer
tainty that any function that is misunderstood and is called with the resulting incorrect 
parameter setup will cause a crash. This kind of bug can be frustrating because it's 
not the logic of the program that's wrong-it's the understanding of the Amiga library 
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routine that's in error. Usually one or two experiments are needed with the setup of 
the parameters until the right one is hit upon. 

The advantage of using a debugger in this way is that it's possible to change the 
parameters used in a library call from the debugger itself. Thus it was possible, in a 
couple of instances, to change a parameter and try the call; if it didn't work, I changed 
the parameter and tried the call again until the routine worked. At that stage, it would 
be back to the editor to change the source code, remove the _L YO Debug call, and 
check that the reassembled program now functioned. This is one of the many kinds 
of situation where a debugger is absolutely invaluable. It's no exaggeration to say that 
the debugger was indispensible in the development of even this simple program. 

Use the program and experiment with the source code. Often a good way to start 
your own programming project is to start with a skeletal program such as the one printed 
here and build around it. From small beginnings ... 
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Number-Crunching 
The intent of this chapter is to give an introduction to number-crunching and a closer 
look at the binary number system as used on digital computers. Number-crunching is 
a term that's generally used to describe the actions of the computer when it manipu
lates numbers. On large mainframe computers, this term invokes images of thousands 
of numbers being mashed together. In certain scientific and mathematical applications, 
this is almost true, as literally millions of equations might be solved to arrive at an an
swer. Numbers come as close as they ever will to being crunched together in these 
types of circumstances. For lesser mortals using microcomputers, number-crunching 
takes on the lesser role of solving such things as equations in a spreadsheet or calculat
ing the memory space required to store a certain amount of data. You will be better 
able to perform numeric manipulations on a computer if you have a good overall un
derstanding of the methods available. This chapter will elucidate some of these methods. 

The two program examples in Chapter 11-the one to write text on the CLI screen 
and the other to draw a gadget window-needed no number-crunching activity at all. 
It is possible to write programs that simply don't need to manipulate numbers to any 
great degree. For instance, if you wrote a program that was an editor or word-processor, 
you'd hardly need any numeric manipulation (except maybe a tiny amount in counting 
words or calculating margins and the like). 

Number-crunching on a computer can really be broken up into a specific few ac
tions. A computer is normally called upon to add, subtract, multiply, and divide num
bers, and also to perform logical operations such as AND, OR, and XOR. This chapter 
will discuss how these are accomplished on the Amiga and also give a sample program 
that allows you to take a look at some results for yourself. 
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THE BINARY NUMBERING SYSTEM 
First of all, a more thorough look needs to be taken at something that was touched 

upon in an early chapter: the binary number system. All modem digital computers use 
the binary numbering system when handling numbers. It's worthwhile to get a good 
grasp of this system because it provides an understanding of the most fundamental 
level of digital computer operation. 

When we use numbers in everyday life, we use a number system called the deci
mal system. We use the symbols 1, 2, 3, 4, 5, 6, 7, 8, and 9, and the symbol 0 to mean 
a null quantity. There are 10 digits in all. What happens when we get past the number 
nine? We're still talking about quantities that need to be represented using some kind 
of symbols, but in the decimal system a decision has evolved that dictates we don't 
use another symbol after nine. What we do is to start over with symbols we already 
have and start a new column to the left. Instead of having an entirely new symbol after 
9, the number ten is represented by the digits 10. Thus, a system has been implemented 
to carry over digits to the left every time the limit of the number base of ten is reached. 
When a digit in any column reaches nine, the next time that digit is increased it will 
cause a one to be added to the column to its left. 

All number systems-no matter what base they count in-employ this method of 
carrying across. Otherwise, an infinite number of number symbols, each one represent
ing the next higher numerical quantity, would be needed. Obviously, this is impracti
cal, and the decimal numbering system demonstrates a realization of that fact. The 
actual reason why we count using a number base of ten has never been convincingly 
explained. It's often assumed to have something to do with the simple fact that we 
have ten fingers upon which to count. It's ironic that, if binary rather than decimal 
had emerged as our normal number system, we'd be able to count to 1,023 on our fingers! 
Apparently, if we'd have been made with four fingers on each hand instead of five, 
the chances are we'd have counted in octal. (Octal will be covered in a short while, af
ter investigating binary in greater detail.) 

When a lot of people think of binary, they think of it as a complicated, alien num
bering system and are intimidated by the sight of it. There's no need to be, however; 
it's the simplest possible numbering system there is. It's much simpler than the deci
mal numbering system we use all the time without giving any thought to it. It's simple 
because, instead of 10 digits, only two digits are needed. The two digits are 0 and 1, 
as was pointed out in Chapter 1. The same basic rules apply as in the decimal system: 
whenever a digit in any column reaches the limit imposed by its number base, the next 
column to the left is incremented by a carry. If that column has reached its limit, then 
the next digit receives a carry, and so on until a digit can represent the carried quan
tity. This is the same as when one is added to the decimal number 999. The one causes 
the first column to flip to zero, and a carry to be added to the second column, which 
also flips to a zero, generating another carry, and so on until finally the fourth column 
shows the carry as a one and the number 1000 is produced. The same thing happens 
in binary with the number 111. If one is added to that, then column one (which has 
reached the limit of the number base) flips to a zero and a carry is added to column 
two. In exactly the same way as with 999 in decimal, the excess digit is carried across 
until it can be accommodated. Thus, the 111 in binary becomes 1000 when one is ad
ded to it. Don't be confused by the number 1000 though; in this case it's binary, and 
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not 1000 as we normally think of it. You are looking at the number 1, 0, 0, 0 in binary. 
If you're an absolute newcomer to binary, you'll soon see that these numbers make 
absolute sense. 

You can learn an awful lot about binary by analyzing what you do, without think
ing much about it, in decimal. One thing that is absolutely taken for granted when looking 
at a decimal number is the weighting of each column in a string of digits. For example, 
look at the number 999. Just from regular habit, you know that it consists of three digits 
and is a quantity that is the number 9 from the right-hand column added to the number 
90 from the middle column added to the number 900 from the left. To understand the 
number, you don't even have to mentally add these numbers together-it becomes in
tuitive after the use of numbers has been learned. This, unfortunately, is not the case 
in binary or any other number base. In these cases it is necessary to think about the 
quantity that's being represented; however, the same principle, applies as in decimal. 

The decimal system multiplies each column by 10 times the value of the preceding 
column. Therefore, the first column represents units or ones; the next column represents 
tens; the next, hundreds, then thousands, and so on up to infinity. In binary, the first 
column represents one; column two represents two; column three represents four, the 
next, eight, then sixteen, and so on up to infinity. Figure 12-1 shows the weighting 
of the first few columns in binary-this can be a help in converting numbers from bi
nary to decimal. In both decimal and binary (and in fact any number base), each column 
represents the previous column multiplied by the number base. Therefore, in binary, 
every column to the left represents the column to the right multiplied by two. For in
stance, 10 in binary is no ones and one two-or the number 2 in decimal. Notice that 
the binary 10 is binary 1 shifted left one place. Any number shifted left one place in 
binary is multiplied by two, so 10 is double 1. This is akin to the decimal system, in 
which any number shifted left is multiplied by ten, so 10 is ten times 1. This is another 
property common to all number bases: shift a number left and it is multiplied by the 
number base. This is one of those tricks that can be useful to remember when you 
are using number bases other than 10. 

Take a close look at a couple of binary numbers and see if they make sense follow
ing what you've learned so far. First, look at that number 111 that was used earlier. 
In binary, this is a one in the first column, a two in the second column, and a four in 
the third column. To understand the quantity being expressed, the numbers are added 
together, as was 900, 90, and 9 in the decimal number 999. Thus, binary 111 is four 
plus two plus one-yielding the result of seven in decimal. Therefore, the number 111 
in binary is the number 7 in decimal. Both 111 and 7 represent the same quantity, but 
each is a different way of expressing the same number. Because of the ease with which 
zeros and ones can be represented electronically, binary has become the favored num
ber system used in computers. 

1128164 132 116 1 8 4 2 

Fig. 12-1. The weighting of the first eight columns in the binary numbering system. 
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0 0 1 
0 1 0 
0 1 

1 
1 

10 
Fig. 12-2. The binary addition table. 

Consider the addition of one to that binary 111 to see if things add up. The result
after carrying across-was 1000. Analyzing that number reveals that there are no ones, 
no twos, and no fours, but there is one eight in the leftmost column. This binary num
ber is the number eight. Happily, the number seven (binary 111) with a one added to 
it becomes eight (binary 1000), just as we'd expect. 

To gain a little more confidence with this strange number system, imagine the num
ber 101. Using the same method, we see that there is a one in the right column, noth
ing in the middle (twos) column, and a one in the fours column on the left. This number 
is therefore four plus one, or five. Now we can shift it left one place and get 1010. 
Breaking this number down, there are no ones on the right, one two, no fours, and 
one eight at the extreme left. In other words, this is the number 10, and as promised, 
shifting a number left in binary has multiplied it by two. 

Let's look at some more binary numbers using the knowledge we've gleaned so 
far and make sure that everything makes sense. A good review would be to take a 
couple of binary bytes of eight bits each in length and convert them to decimal. Take 
the number 10101010 and see what happens when it is added to the number 00000011. 
Notice there's no problem in column one. Adding a one to a zero gives a one as shown 
in the binary addition table in Fig. 12-2. 

In the next column, a one is added to another one, resulting in a zero with a one 
carried over in a similar fashion to a carry in decimal arithmetic. This one that is car
ried over is then added to the zeros in column three, and the result is the number 
10101101. This is how the addition looks: 

10101010 
+ 00000011 

10101101 

When this is converted to decimal, you can see that everything does indeed make 
sense. The first number, 10101010, has ones in the columns representing 128, 32, 8, 
and 2; when these are added, the result is 170. The second number has ones in the 
columns for 2 and 1; thus this is 3. The result has ones in the columns for 128, 32, 
8, 4, and 1; this is 173 in decimal. It should be no surprise to see you've added the 
number 170 to 3 and have a total of 173. 

-Now try subtracting the binary number 101 from 10101010 and see what ensues. 
In this case, a few borrows are required in columns one and three. This is dealt with 
exactly the same as it is in decimal. The borrowed digit is used in the current column 
and then "paid back" in the next column. Thus, in the first column, one can't be sub
tracted from zero so a one is borrowed to make it one subtracted from 10. This leaves 
one with a one to be paid back to column two. Thus, column two becomes one minus 
one rather than one minus zero as the one is paid back. Exactly the same happens in 
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columns three and four to give the result as follows: 

10101010 
00000101 
10100101 

It would be wise to check to ensure it looks right in decimal. From the previous 
example, you know 10101010 is 170. 101 is a four and a one-or five. 10100101 is 128, 
32, 4, and l-or 165. Perfect; five has been subtracted from 170 to get 165. 

At this point, it starts becoming apparent that dealing with binary-although it's 
starting to look simple and easy to understand-is rather cumbersome. Binary requires 
so many digits that they threaten to sprawl off the edge of the page. If you think about 
it, the higher the number base, the more digits that are available to represent num
bers, and therefore the fewer columns that are needed to express a quantity. This means 
that binary, with its meager two symbols, requires more columns than any other num
ber base. 

SHORTHAND METHODS OF REPRESENTING BINARY NUMBERS 
A shorthand method of representing binary numbers would be helpful. This would 

allow the manipulation of the same quantities-still in binary-but using fewer digits. 
There are a couple of systems that are commonly used to do this. Before being per
turbed by the sound of them, just remember that all they represent are the binary digits 
you've seen so far, in a slightly different way. One of these is the hexadecimal number
ing system and the other one is the octal numbering system. Despite their ominous
sounding names, these numbering systems are only different ways of manipulating sim
ple binary numbers. A computer knows nothing about octal or hexadecimal-they are 
just conveniences for human programmers. 

First, take a look at that number 10101010. In decimal, it is the number 170. Three 
digits are all we're used to seeing for the number 170, and this seems convenient enough; 
however, its binary representation, required by the computer, takes eight digits, which 
becomes somewhat cumbersome for humans. This is even more true when we start 
dealing in 16 and 32-bit quantities. A computer couldn't care either way, but we hu
mans need all the breaks we can get. 

The Octal Numbering System 
First of all, let's try splitting those eight binary digits, or bits, into sections that 

can be represented by the more familiar symbols of zero to nine. If the eight bits are 
split into three bits on the right hand side and then three bits to the left, that leaves 
two bits on the far left, like so: 10 101 010. All eight bits are taken into account, but 
they are now split up as shown. The three bits at the right-hand side are the bits 010. 
This three-bit quantity represents the number 2 in decimal-that's no ones, one two, 
and no fours. The three bits to the immediate left are 101. This, taken on its own as 
a binary number, is decimal 5-one one, no twos, and one four. The remaining two 
digits at the far left represent the number two-no ones and one two. Put together, 
these decimal-type symbols-252-provide us with a convenient shorthand for 10101010. 
You have to bear in mind, though, that each of the three digits 2, 5, and 2 are not deci-

133 



mal digits, but simply represent three bits apiece. This would seem to leave nine bits, 
but because we're dealing with eight-bit bytes, it is assumed that the ninth bit is al
ways zero. In other words, 252 converts back to 010 101 010, and the leftmost bit is 
ignored in an eight-bit byte. 

Without consciously thinking about it, what you've done is taken a leap into the 
octal numbering system. We're still talking about binary numbers, but they are being 
split into groups of three. These groups of three bits are used to arrive at digits that 
can be written and read in a more familiar fashion. If you look at any three-bit group, 
you'll see that they can't hold a number higher than 7. The maximum number that 
can be held in three bits is 111, which imposes that upper limit. Therefore, you'll never 
see a digit higher than seven in any column of an octal number. This is just as it ought 
to be-remember in the decimal numbering system you can't go higher than nine in 
any column before having to carry over. 

Let's see if this works on its own using a carry-over. Take the number 17 in octal, 
add a one to it, and see if it makes any sense in binary and decimal. Because the num
ber 7 is as high as you can go in octal, adding one to it makes it flip to a zero and a 
one has to be carried over to the next column; so the result is 20. On the face of it, 
adding one to 17 to result in 20 seems strange, but because we're manipulating octal 
rather than decimal, everything makes perfect sense. Split these octal digits into groups 
of three and see if that makes any sense. In binary, octal20 is 010 000. Counting from 
the right, the single one bit is in the 16's column, so 010 000 is decimal16. The origi
nal octal number, before it was added to, was 17. In binary, this looks like 001111. 
The four bits here stand for a one, a two, a four and an eight, respectively. This leaves 
decimal15. And so you've added one to 15 (octal17) to arrive at 16 (octal20). So far 
everything is perfect. 

Now let's see if there's any way of converting directly from octal to decimal with
out recourse to binary. Remember that octal is being used here as a shorthand for bi
nary, so it would be nice not to have to use binary as the key to octal. All you have 
to do is weight the columns in octal in a similar manner to weighting the columns in 
binary. In the octal numbering system, the column on the right represent ones, the 
next column to the left is eights, the next column is eight times eight (or 64s), the next 
column is eight times 64 (or 512s) and so on. See Fig. 12-3, which shows the first few 
columns of octal weighting. Now look at that octal number 17 and convert directly to 
decimal. This is seven ones (or 7), and one eight (or eight). It couldn't be simpler
seven and eight is 15, so octal17 converts to decimal15-and you didn't look at a bi
nary quantity. 

Decimal numbers in computer programming are not very often converted to and 
from octal by hand. The main reason for octal is just as a shorthand for dealing with 
binary numbers, so don't be put off by all these number-base conversions; most program-

12.097.1521262.144 1 32.7 •• 4096 512 64 8 

Fig. 12-3 The weighting of the first eight columns in the octal numbering system. 
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268,435,456 16,7n,216 1,048,576 65,536 4096 512 16 1 

Fig. 12-4. The weighting of the first eight columns in the hexadecimal numbering system. 

mers who need to use octal in any numeric manipulations use a special calculator that 
converts from one number base to another. 

The Hexadecimal Numbering System 
What happens if you split the eight bits of a byte more sensibly into two groups 

of four? Intuitively, this seems tidier than splitting them into groups of three, which 
would be more appropriate if the byte was a multiple of three bits. With two groups 
of four bits, you don't have any bits that don't quite fit, as with the example above. 
Now, each group of four can represent from 0000 to 1111 (or in decimal, zero to 15). 
Using this method, a byte could be written as two digits, each one standing for four 
bits. The number 55, for instance, could represent the binary number 0101 0101. 

What should be done if a number greater than 1001 (decimal9) is needed in one 
of the groups? Adding one to a column containing 1001 gives a number for which there 
is no single symbol. For example, with 99, if you add one to the right-hand column 
(in binary), you get the number 10011010. There is no symbol to substitute for the 
group 1010 (which is decimal10). You can't write 10011010 as 9 followed by 10 (or 
910) because that gives three digits. Using each digit to represent four bits, 910 would 
be expected to stand for 1001 0001 0000. This is a twelve-bit binary number, and not 
the binary 1010 1010 that is intended. To get past this problem, some new number 
symbols must be invented. Six of them are needed, to represent 1010, 1011, 1100, 1101, 
1110, and 1111. The number 1010 is therefore represented by the letter A, the num
ber 1011 by B, the number 1100 by C, and so on up to F for 1111. 

Whereas in the octal numbering system, the highest you could count was seven 
in each three-bit column, the highest you can count with four bits is 15. This indicates 
the maximum before needing to carry over. With decimal (tens), you carry over after 
reaching nine, with octal (eights) you carry over after reaching seven. Because you are 
currently carrying over after 15, it can be deduced that the number base is now 16. 
Thus, you're now dealing with the hexadecimal numbering system. 

This means that the number 99 in hexadecimal (or hex for short) represents 9 ones 
on the right, and nine sixteens on the left. In hex, the columns are split up from the 
left into ones, 16s, 256s, 2048s and so on. See Fig. 12-4, which shows the weighting 
of the first few columns. Adding one to hexadecimal 99 yields the result 9A by the 
rules set so far. Counting onwards from here would give 9B, 9C, 9D, 9E, 9F, and (after 
carrying over) AO, A1, A2, and so on. 

Try adding one to hex 99 in all the numbering systems you know, to convince your
self that you are dealing with the same quantities in every different number base. First 
of all, the hexadecimal number 99: this is nine ones (decimal 9) plus nine 16s (decimal 
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144) to give decimal153. In binary this is 10011001, which is one one, one 8, one 16, 
and one 128, which happily add to give decimal153. How about octal? Split the binary 
into groups of three, like so: 010 011 001. Octally stated, these are the digits 2, 3, and 
1. Using the octal column weightings on each digit gives one one, three 8s, and two 
64s. That's 1, 24, and 128, which once again totals to 153. Thus, in all three number 
bases (four counting decimal), the quantity is the same. 

Finally, let's make sure that adding one to hex 99 indeed gave the truth when it 
yielded 9A. In hex, (remembering that A is decimal10) 9A is ten ones (decimal 10) 
and nine 16s (decimal 144), which gives 154. In binary 9A splits into two groups of 
four bits: 10011010. That's one two, one eight, one 16, and one 128 (See how binary 
can never be more than one of anything?)-154 again. Octal splits the bits into 010 011 
010 or 232; that's two ones, three eights, and two 64s, which, not surprisingly by now, 
gives 154. So, 153 plus one in any number base always gives 154. 

Choosing a Number System 

Which numbering system you decide to use as a programmer is entirely at your 
own discretion. Not too many people flit back and forth between number bases-at 
least not without the help of a calculator. If you feel uncomfortable with either octal 
or hex, you could be pedantic and stick to binary just like the computer, but once the 
binary system is understood, the use of octal and/or hexadecimal is almost inevitable 
as a convenient shorthand. In the professional world, programmers seem to use the 
system they used on their last job; however, it makes more sense to use hexadecimal 
on a computer whose word length is a multiple of four, and octal on one with a multiple 
of three. You have a choice on 12 and 24-bit machines. On the Amiga, with object lengths 
of 8, 16, and 32 bits, hexadecimal is the most appropriate system. Remember that the 
computer knows nothing of all this-binary is all it works with. When you are using 
hex, two digits conveniently represent eight bits, four represent 16 bits, and eight digits 
represent 32 bits. Writing eight digits saves considerable effort compared to grappling 
with 32 binary digits. 

Binary-Coded Decimal 
You've looked at splitting the binary number into groups of three (which gives oc

tal) and four (which gives hexadecimal). There's another method of splitting into groups 
of four that is useful to look at, although it's not as common as hexadecimal. Its main 
use is for arithmetic manipulation within the computer, rather than as a shorthand for 
binary. This is a method whereby you don't need to go beyond the familiar digits zero 
to nine. Instead of using those digits A to F in hex, the normal decimal rules are ad
hered to. Thus, when one of the groups of four digits goes past the number 9, a carry 
is generated into the next column. By using four digits per column, if you stick to a 
range of 0000 to 1001, you can elect to have those four bits stand for the numbers zero 
to nine as in decimal. For that reason, this method is called binary-coded decimal (BCD). 
It can be used with special instructions within a computer on the understanding that, 
if any group of four binary digits contains a 1001, a carry will be generated if it is in
cremented. Thus, adding two to 89 in BCD looks like this: 
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BCD add 
1000 1001 
0000 0010 

1001 0001 

BCD 89 
BCD02 

BCD 91 

If this were done using a pure binary addition instead of a binary-coded decimal one, 
the result would have looked like this: 

binary add 
1000 1001 
0000 0010 

1000 1011 

BCD 89 
BCD02 

BCD garbage 

Notice that in BCD, you're still using bits zero and one to represent quantities (al
beit in groups of four bits), but now you're using the numbers zero to nine in the same 
way as if you were dealing in decimal. Apart from the ease of arithmetic manipulation, 
it's easy to convert these groups of four bits into their correct ASCII characters for 
printing. The drawback is that in BCD, a byte can only hold up to 99, whereas in bi
nary it can hold up to 255. 

USING NEGATIVE QUANTITIES IN BINARY 
Now, back to binary: let's look at some quantities and see how they behave under 

certain conditions. This will give some extra interesting insights into how to deal with 
negative numbers. You've already seen binary addition and subtraction, but let's see 
a different example using subtraction that yields ambiguous results. If the number one 
is subtracted from zero in binary, you end up having to borrow for every digit of the 
eight-bit quantity. The result is all ones (from the constant borrows), and a borrow will 
fall off the left hand side of the result into the carry flag of the computer. Ignore the 
carry flag for the time being and concentrate on the result, which looks like this: 

0000 0000 
binary subtraction 0000 0001 

11111111 

binary 0 
binary 1 

The resultant number, 11111111, would seem to be 255 if it's converted to deci
mal. It looks as if the calculation has gone awry. One has been subtracted from zero 
and the result is 255, which is obviously wrong; however, that's only because no deci
sion has been made as to how to represent negative quantities using the binary num
ber system. Up to now, only positive numbers have been dealt with. In the zeros and 
ones that the computer uses, there appears to be no way of specifying a minus or plus 
sign, but the concept of a plus or a minus can itself be represented as a zero or a one. 
What is done is to use the most significant bit (at the extreme left), of any binary num
ber as a sign. If this bit is a zero, you're dealing with a pos#ive number, and if it's a 
one, you're looking at a negative number. This doesn't have to be so in every number 
in the computer-only where a signed quantity has to be manipulated. 
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Even though the top bit gives a simple way of storing a sign, + 1 is not actually 
stored as 00000001, nor -1 as 10000001. (If you really wanted to, however, your pro
gram could do this.) Instead, a more convenient system called two's complement is used. 
Two's complement provides a "magic" way of converting a positive to a negative num
ber. It also allows you to perform the fascinating trick of being able to subtract one 
quantity from another using addition. 

To arrive at the two's complement of any binary number, you simply invert all 
the bits and add one. Let's try this with the number three to demonstrate how to sub
tract three from a number using addition. Three, as a binary byte, is 00000011. Using 
the two's complement, invert all the bits to 11111100 and add one to give 11111101. 
Now add this number to the number four, which is 00000100 in binary. The addition 
looks like this: 

binary add 
0000 0100 
1111 1101 

0000 0001 

binary 4 
2's comp 3 

binary 1 

Follow the addition from the right hand side. Zero and one gives one; then zero 
and zero gives zero. One and one gives zero carry one, and finally the carry is added 
all the way out of the end of the result byte. Magically, you end up with the number 
one, so it seems that four minus three works using the addition of the two's comple
ment of three. In fact, deep inside the electronics in any digital microprocessor, all arith
metic computations are performed using addition only. At its innermost arithmetic heart, 
that's all a microprocessor knows how to do. As you've seen, by taking a two's com
plement and then adding, the processor can do a subtraction. Later in this chapter, 
the same additions are used to perform a multiplication and even a division. 

Before doing that, consider the number one that was subtracted from zero to ap
parently produce 255. Remembering that two's complement is being used to give nega
tive numbers, try negating the number one. Eight bits of binary number one is 00000001; 
take the inverse of all the bits (this is called the one's complement), to get 11111110. 
Get the two's complement by adding one to this, which gives 11111111. The negative 
of one in eight bits is 11111111, which is exactly what was produced when one was 
subtracted from zero earlier. What you ended up with wasn't 255 at all-it was in fact 
-1, in two's complement form. 

So now you have a convenient method of representing both positive and negative 
integers in the computer. Bear in mind that it's the programmer who decides which 
way to interpret the number 11111111. It can be viewed either as an unsigned quan
tity, in which case it really is 255, or it can be used as a signed quantity, in which case 
it's -1. For example, if monetary amounts are being manipulated, it's quite likely that 
signed quantities will be used. If you're counting objects, on the other hand, you'll prob
ably use an unsigned quantity because you expect to count from zero to some positive 
quantity. Note that the number zero is taken to be a positive quantity, which is the 
normal way it's viewed in computing. It isn't negative, so it's regarded as a positive 
number. 

This gives two ways of looking at an eight-bit number. It can be a positive number 
from zero to 255, or it can be a signed number from -128 to + 127. It could also store 
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zero to 99 if you decide to regard and use it as a binary-coded decimal number. This 
underlines the fact that numbers in a computer mean only what you want them to mean 
in a particular program. It shows three possible ways of storing a number in eight bits: 
signed binary, unsigned binary, and BCD. 

Remember that only eight-bit quantities are being used here to keep the demon
strations simple. The 68000 works happily in either 8, 16, or 32-bit quantities. If desired, 
you can work with even larger numbers of bits if the numerical precision of computa
tions needs to be increased. To do this, the carry and overflow flags in the processor 
are used. As you've already seen in some examples, the carry flag is set whenever a 
number is added to a quantity that results in a carry being generated out of the left
most bit of a binary number. Because this bit is outside of the binary number, it can 
be tested by the programmer and continued into another number if desired. Often, if 
the carry-out bit is important, it will be added to or subtracted from a binary number 
to the left of the number that produced the carry. This gives a way of extending the 
digits out from the left-hand side of a number. 

The carry is all well and good when used with unsigned numbers, but what hap
pens when a byte of 11111111, representing -1, has a one added to it? Because the 
one is just added in, it will generate a carry, having flipped the number to zero. This 
is fine; the sign of the number has been changed and flagged with a carry. Now look 
at the case of + 127 with a one added to it (assuming that the 127 is being used as 
a signed binary number). The addition will look like this: 

0111 1111 
binary add 000 00001 

1000 0000 

signed 127 
signed 1 

Here, the most significant bit has become set; because of signed quantities, the 
number looks like - 128. This is incorrect; one has been added to 127 and, in the 
representation of binary numbers the sign has been changed. Notice also that, in doing 
this, a carry has not been generated from the left-hand side, so there seems to be no 
warning of what's happened. This is where the overflow flag comes in. In this instance, 
the overflow flag would have been set to let the programmer know that a number has 
gone above or below the limits that apply to signed quantities. That's the main differ
ence between the carry and the overflow flags. 

FIXED-POINT AND FLOATING-POINT NUMBERS 
Up to this point, only integers have been dealt with. What happens when you want 

to represent a number that contains a decimal point? There are two main ways of ac
complishing this. One is called fixed-point; the other, floating-point. First, let's look at 
fixed-point. With this method, the point is assumed to be in a particular place within 
the binary digits. Because binary is being discussed, this point (more familiarly known 
as a decimal point) is now referred to as a binary point. In looking at integers up to 
now, we've really been talking about fixed-point, because it has always been assumed 
that the binary point is at the right hand side of all the bits being manipulated. Integers 
have been used, so it has also been taken as a given that there's no fractional part to 
the number. 
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To deal with a fractional part of a number, look at what weightings are given to 
the binary digits to the right of this imagined binary point. There's no big surprise here, 
because, just as bits increase in significance by powers of two for each shift to the left, 
they decrease in significance by powers of two for each shift to the right. In other words, 
each bit to the right represents half the bit to its left. Therefore, the bit to the right 
of the binary point (and to the right of the one's bit) represents the quantity 0.5. The 
next rightwards bit is half of that (or 0.25), the next is half of that (or 0.125), and so 
on. Figure 12-1 showed the binary weighting given to each column to the left of the 
binary point. Thus, it's possible to store a fair amount of fractional precision in as few 
as eight bits because the least significant bit of this fractional part represents .00390625. 

Adding and subtracting these fixed-point numbers is exactly the same as adding 
and subtracting integers. The binary point is in the same place in each quantity, so 
you can simply add the fixed-point numbers together and be assured that you'll end 
up with the binary point in the same place. As an example of that, the number 1.5 is 
added to 1.25 in binary, using eight bits each for the integer and fractional parts: 

00000001.10000000 
00000001.01000000 

00000010.11000000 

(1.5) 
(1.25) 

(2.75) 

The binary point is only shown here for illustration. In the computer, the 16 bits just 
run together as if they were a 16-bit integer. As you can see, there's no difference be
tween this example and ordinary integer addition. All that has been done is to decide 
to weight each binary digit from .00390625 on the extreme right up in powers of two 
to 128 on the extreme left. If you wished, you could assume signed numbers using the 
same two's complement system previously discussed. 

Note that in fixed-point notation, it is assumed that both numbers have the binary 
point in the same place (in the above example, it is after the eighth bit). This is very 
important. If one number was set up with a binary point after the seventh bit, for ex
ample, the numbers couldn't be added until the points lined up. 

The last method of storing numbers to be looked at here is floating-point. This 
is a method in which the binary point is allowed to float within the digits being 
represented, enabling you to use the maximum number of significant bits in the represen
tation of a number. As a result, a greater degree of accuracy can be achieved in com
putations involving very large or very small numbers. This can be seen by looking again 
at the fixed-point binary representation of 1.5. This number used only two set bits out 
of the 16 in the fixed-point word. If a greater degree of precision in the fractional part 
(past the least significant bit) was needed, there would be no way to do it. There was 
no room in the number to store beyond the rightmost .00390625 bit. In floating-point, 
however, it would be possible. 

You can learn something by looking at that fixed-point number. It was decided that 
the binary point was located at bit position eight from the right-hand side within the 
16-bit quantity. That position is implicit within the example, but when 1.5 is used, all 
seven bits to the left of the leftmost one are wasted. If, somehow, the whole number 
could be moved to the left, still keeping track of the binary point, there would be extra 
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room at the right-hand side for more fractional digits. 
Similarly, large numbers with few or no fractional bits could make good use of the 

wasted bits to the right of the point. Moving the binary point in this way would allow 
freedom to maximize the number of bits used, thereby giving greater precision. 

Floating-point enables you to do this by having an extra number alongside the cur
rent digits. This number is used to keep track of the floating binary point. In the exam
ple with 1.5, you could make room for another seven bits by shifting the whole number 
seven bits to the left. Minus seven would then be stored in the new, extra byte of data
this byte is used to keep a tally of how far the point was moved. This is how the 1.5 
would look, assuming eight bits for the point tally and 16 bits for the number part: 

Fixed point 1.5 

00000000 00000001 10000000 

Floating point 1.5 

11111001 11000000 00000000 

The point tally in the second of these is two's complement of seven; it shows that 
the point is displaced seven bits to the left. All that has been done is to shift and keep 
track of the two ones in the number, allowing room for more digits to their right. You 
could, if you wished, store digits rather than these zeros to enhance the overall preci
sion of the stored fractional part. 

This example has been kept intentionally small. In normal computing, there are 
at least four bytes used to store what is known as single precision, eight bytes are used 
for double precision, and ten bytes for extended precision floating-point. One byte is usually 
used to keep track of the floating binary point. This part is called the exponent, and 
the numerical part is called the mantissa. Let's look at a real single-precision floating
point number and work out what it represents: 

11111110 0110000 00000000 00000000 

First, it's necessary to know that floating-point numbers are stored with the bi
nary point to the left of the numerical part (mantissa). The number on the left (the ex
ponent) is -6. Work this out by taking the one's complement to get 00000101, and 
then taking the two's complement by adding one to get 00000110, or decimal 6. This 
means you have to locate the binary point three places to the right of its current posi
tion. Its current position is to the left of the mantissa, which starts immediately after 
the eight-bit exponent. Thus, after placing the point, the number would look like this: 

11.110000 00000000 00000000 

It consists of an integer part of three (two plus one) followed by a fractional part of 
.75 (.5 + .25). This number is, in fact, a floating-point representation of 3.75. 

141 



So far, it has been assumed that the numbers are positive. As with fixed-point in
tegers, floating-point can also represent negative numbers. Not only can the exponent 
contain a positive or negative displacement of the binary point, but the mantissa itself 
can be negative. This is accomplished in exactly the same way as with normal integer 
arithmetic; a two's complement system can be used for signed numbers with the most 
significant bit standing for a minus sign. In floating-point, however, this minus sign 
can be somewhat bothersome, and is dealt with in a slightly different way. To under
stand why, you need to look at how a floating-point number is set up and aligned by 
the computer. (Incidentally, this process is automatic on floating-point hardware but 
has to be done by a program otherwise.) Take another look at the number 1.5 to see 
the steps in conv~rting it from a fixed- to a floating-point number. 

A subroutine to do this would take the number and just keep shifting it consecu
tively one bit left until the most significant bit had become a one. (Thus, only insignifi
cant zeros are shifted out at the left.) Each left shift that the routine did would decrement 
the tally in a byte that would finally end up becoming the exponent. Once the most 
significant bit has been set, the process comes to a halt; otherwise meaningful bits would 
be lost from the left of the mantissa. This important alignment process is called nor
malization. It ensures that the binary point is accounted for and that the maximum 
amount of bits can be packed into the mantissa. This is the way all floating-point num
bers are stored within the computer while not being used in a calculation. 

Once you understand that this process is always carried out before a floating-point 
number is stored, you know for certain that any nonzero floating-point number will 
always have its most significant bit set as a result of the normalization. (A quantity 
of zero is treated as a special case.) Because you are aware that this topmost bit is 
always set, you can now put it to good use. In fact, with a little ingenuity, it can be 
used as a minus sign. Usually, the way this is done is to leave the bit set on only if 
the mantissa is negative; otherwise the bit is artificially coerced to a zero. The fact 
that it is really a one means that it has to be reset as such before the number can be 
used. It can be allowed to remain as a one if the number is negative (assuming the 
mantissa is a two's complement negative number), or it can be replaced with a zero 
if it's positive. Following this, the number can be stored in memory with full confi
dence that the sign can be reinstated. 

When the quantity is recovered from memory for use in a calculation or conver
sion, the most significant bit will first be tested to see if the mantissa is positive or 
negative. The result of this test is temporarily saved somewhere, and that bit is set 
back to a one. At that point the program has a reinstated floating-point number and 
a knowledge of the sign of the mantissa. 

The exponent is a normal two's complement eight-bit number, so it doesn't have 
to be aligned, and there's no special treatment of its sign bit. Some systems, however, 
store a floating-point zero as a special case by setting the exponent to zero and ignor
ing any bits in the mantissa. If this method is used (and it often is), there will be a spe
cial check to ensure that the exponent can never be zero in any other case. Many 
computers use a method whereby 128 is added to the exponent to prevent it from ac
cidentally being a zero. This 128 is later subtracted to find the real exponent. 

Using this information, you can now see that the number 1.5 would have been stored 
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in memory in a different manner than it would be manipulated in a calculation. The 
example above showed the mantissa with all bits present as it would be during a calcu
lation. When stored in memory, however, it would look like this: 

11111110 0110000 00000000 00000000 

Notice that it's exactly the same, except for the high bit of the mantissa being switched 
off. 

This concludes the overview of how numbers can be stored in a machine to facili
tate their use in calculations. In looking at other people's programs, you might find 
slight departures from the above, but the principles behind each type will always be 
the same. 

PERFORMING CALCULATIONS USING BINARY NUMBERS 
Earlier it was mentioned that all manipulations are performed on a digital com

puter using addition within the processor itself. You saw how subtraction can be ac
complished by using the two's complement and adding it to the number being subtracted 
from. But how are multiplication and division performed? 

Multiplying Binary Numbers 
The way multiplication is performed is refreshingly simple. It relies on the fact 

that shifting a number left in binary has the same effect as multiplying it by two. Shift
ing a number left by a zero amount is the same as multiplying by one. Because every 
number that exists is some multiple of two and one, it's possible to accomplish mul
tiplication by any amount using a combination of shifts and adds with the number be
ing multiplied. For instance, to multiply a number by two, it is shifted left one bit; to 
multiply by one, the number is not shifted at all. To multiply by three, the number 
is shifted left one (to multiply it by two) and then added to itself in its unshifted state. 
Any number multiplied by two and added to the original number has been multiplied 
by three. 

Let's look at a slightly more complicated example to show that this process works 
with any number. For instance, multiply the number five by eleven. In binary, five 
is 101, and eleven is 1011. The numbers line up like this: 

00000101 
00001011 

Look at the bits in the eleven. They dictate how to shift that number five. Starting 
on the right at the least significant bit, the one says to shift the five left by none. The 
next bit says to shift the five by one, which multiplies it by two. The next bit is not 
set, so skip to the next. This bit is set, and tells you to shift the five by three places, 
which multiplies it by eight. Each bit in the multiplier simply says to shift the multipli
cand by one more byte. The three quantities resulting from that shifted five look like this: 
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00000101 
00001010 
00101000 
00110111 

shifted 0 (X 1) 
shifted 1 (X 2) 
shifted 3 (X 8) 

(X 11) 

The result when the numbers are added together is 00110111. If you convert the byte 
to decimal, you end up with the splendid number of 55-exactly what you want from 
five multiplied by eleven. 

Bear in mind that with binary multiplication the result can occupy twice as many 
bits as each of the original two numbers. This means that multiplying two eight-bit 
quantities together could produce a 16-bit result. For example 11111111 multiplied by 
11111111 results in 1111111000000001 (255 x 255 = 65025). 

Dividing Binary Numbers 
Division can be accomplished in a similar manner to multiplication, except that the 

number of times one number is contained in another is determined, by subtracting it. 
You could simply keep subtracting the divisor from the dividend, keeping a count of 
how many times it was subtracted. This would give a result, but it is a little tedious. 

There is a more elegant method of division that works in the reverse way to the 
multiplication method shown earlier. To use this method, you need to know how many 
bits are in the dividend. Remember that with multiplication, the answer is always twice 
the number of bits in the integers being multiplied. In division, the reverse is true: the 
divisor and resultant quotient will always be half the number of bits in the dividend. 
This makes sense, as these two numbers multiplied together should yield the original 
dividend. Using this knowledge, you can see how many times a divisor goes into a divi
dend by subtracting it after it has been multiplied by subsequent powers of two. 

Just as multiplication works by adding the original number shifted left, division 
works by subtracting the divisor shifted right. It's a little less intuitive than multiplica
tion, but a couple of examples should help. Let's try dividing eleven by three. To keep 
the example short, the answer (the quotient) will have to be assumed to be two bits
this is because the dividend will be shown in four bits. The divisor has to be the same 
length as the quotient, so it is also two bits in this example. 

The four-bit byte of eleven is 1011, and the two-bit divisor is 11. Before the first 
subtraction, the divisor is shifted left by its own length. It is then sequentially sub
tracted and shifted right until it becomes the original divisor again. At that point, the 
last subtraction is performed to see if it goes into what's left of the dividend. Every 
time the divisor goes into the dividend, the divisor is subtracted from the dividend to 
produce a new dividend. The quotient is then incremented to show this. Every time 
the divisor is shifted right, the quotient is shifted left to reflect the fact that the previ
ous subtraction was twice the value of the current one. Eleven divided by three looks 
like this: 

1011 4-bit 11 
1100 2-bit 3, left 2 

quotient = 00 
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This first subtraction gives a negative result, so the quotient is not incremented and 
you go to the next step. The divisor is shifted right one place, and the quotient is shifted 
left. Because the quotient is zero, it stays the same. 

1011 4-bit 11 
0110 2-bit 3, left 1 

quotient = 00 
0101 

quotient = 01 

The result of this subtraction is positive, so the quotient is incremented. The divi
dend is now replaced by the result of the subtraction-0101 in this case. The divisor 
is shifted right one last time (it now becomes the original divisor of three), and the quo
tient is shifted left. The next step looks like this: 

0101 new dividend 
0011 2-bit 3, left 0 

quotient = 10 
0010 

quotient = 11 

The result of this last subtraction was also positive, so the quotient is incremented 
again. The calculation is now complete. The answer of binary 11 is in the quotient and 
the remaining dividend is, in fact, the remainder of binary 10. Thus, eleven divided 
by three is three remainder two. That took two shifts, which was the number of bits 
in the divisor. 

As a last example of division, let's see if the eight-bit representation of decimal 
55 can be correctly divided by the four-bit eleven. Here's the sequence of steps. Remem
ber that the subtractions would be performed using two's complement addition. 

00110111 
10110000 

8-bit 55 
4-bit 11, left 4 
quotient = 0000 

(negative result, do next step) 

00110111 
01011000 

8-bit 55 
4-bit 11, left 3 
quotient = 000 

(negative result, do next step) 

00110111 
00101100 

00001011 

8-bit 55 
4-bit 11, left 2 
quotient = 0000 

quotient = 0001 
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00001011 
00010110 

8-bit divisor from above 
4-bit 11, left 1 
quotient = 0010 

(negative result, do last step) 

00001011 
00001011 

00000000 

8-bit divisor 
4-bit 11, left 0 
quotient 0100 

quotient 0101 

The last step has given the result: a quotient of five with a remainder of zero. 

LOGICAL FUNCTIONS 

Logical functions are very useful because of the bit-manipulation capabilities they 
offer. For instance, you'd use the OR function to set bits on in a number, regardless 
of their previous state. As an example, if you OR 100 with 011, the result is 111. This 
is used whenever a bit needs to be forced on (like a flag or control bit). The AND func
tion is used to mask bits off in a number. For example, if you start with the number 
110 and then AND it with 011, the result would be 010; the operation switched off 
the leftmost bit. 

The XOR operation is primarily used to reverse the state of any particular bit. For 
example, if you have a number with a bit set and XOR it with another number with 
the same bit set, the bit in the result will be changed to a zero. If this same operation 
were then repeated, it would set that bit back on. This property of the XOR operation 
is interesting. It means that if you XOR a number twice with a mask contained in an
other number, the original number returns. This is often used as a simple encoding 
method in which XOR is used to provide characters with a mask, which are later decoded 
by using XOR with the same mask. 

The NOT operation is used whenever a mirror-image of the zeros and ones in a 
binary number is required. This is the first step in changing the sign of a number using 
its twos' complement (by performing a NOT and then adding one). On most proces
sors, such as the 68000, a complement instruction does this automatically. 

The bit tables for these four logical functions are shown in Fig. 12-5. 

OR 
0 0 1 1 
0 1 0 1 
0 1 1 1 

AND 
0 0 1 1 
0 1 0 1 
0 0 0 1 

XOR 
0 0 1 1 
0 1 0 1 
0110 

NOT 

0 1 
1 0 

Fig. 12-5. The bit tables for the OR, AND, XOR, and NOT logical operators. 
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MATHEMATICAL ROUTINES ON THE AMIGA 
The 68000 provides the ability to do certain operations, such as add and subtract, 

on integers. The MULU, MULS and DIVU, DIVS instructions allow multiplication 
and division of integers. As far as fixed-point quantities are concerned, addition and 
subtraction operations on them can be performed using the 68000's instructions ADD 
and SUB, with a note being kept of the position of the binary point. You will have to 
write subroutines to do multiplication and division of fixed-point numbers, but fixed
point numbers tend to be used somewhat infrequently, so you'll probably be better off 
using floating-point routines. 

The floating-point environment has its own set of software library within the Am
iga. It is available in the libraries called mathffp.library, mathieeedoubbas.library, and 
mathtrans.library. These libraries contain all the routines likely to be required for dealing 
with floating-point numbers of single or double precision, and include routines to per
form square roots as well as other transcendental functions. The documentation for 
these libraries is included in the ROM Kernel Manual. 
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An Assembly-Language 
Calculator Program 

The calculator program found in Fig. i3-1 at the end of this chapter shows how assem
bly language can be used to produce a complex, multifunctional program. Rather than 
provide a line-by-line description of the program, a full set of comments has been 
provided in the source code. The comments detail the full operation of the program. 
There are, however, a few things worth pointing out to help you understand how the 
program works. 

The object of the program is to emulate, as closely as possible, the integer opera
tion of a Texas Instruments programmer's calculator. Apart from the operation of the 
decimal point key, this program closely models the functioning of that calculator. 

The following points are intended both to illustrate how the calculator works and 
to highlight some salient points about the program. First, the TI calculator lets you 
use parentheses to determine the order of operations. For instance, normally, the se
quence 2 • 3 - 1 is performed in the same sequence that it's typed in. Without paren
theses, this would be performed as two times three, yielding six, minus one, yielding 
five. With parentheses, it's possible to change the order of these operations so that 
it becomes 2 • (3 - 1), which is two multiplied by the result of three minus one, giving 
the answer four. Note that in the latter example, the number two has to be saved while 
the calculation three minus one is performed. 

With multiple levels of parentheses like this, it's necessary to save pending opera
tions so that higher priority ones are done first. This is, undoubtedly, the hardest part 
of the program to code. It is accomplished by having an internal register area where 
the pending numbers are stacked. This is done in a way similar to the way the 68000 
handles the stack, except that these numbers are saved in ascending rather than descend-
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ing order.lt's not so much the direction that they're saved in that determines the area's 
definition as a stack; rather, it's the fact that the last number into the stack becomes 
the first one removed from it as calculations are performed. (This is called a first-in
first-out, or FIFO stack.) 

There's a room on this stack for four numbers of 32 bits apiece. This is a totally 
arbitrary number and was chosen to emulate the TI calculator, which also has room 
for four numbers. It would be very easy to change the program to deal with more num
bers by reserving more space where the variable numstk is defined in the program's 
data area. As it is, it's set up as: 

l11.ll!'iS t k deb. l 5,0 

This defines a constant block of memory consisting of five long words initialized to 
zero. The extra word is used to store pending operations along with the pending num
bers. Each operation only needs one byte, so one extra long word of four bytes is ad
ded to the four needed for the number stack. 

The calculator's display is always kept in data register d7; this allows for easy 
manipulation of the display number (which is naturally the most often used number). 
Thus, the calculator can deal with five numbers in total: one in the display and four 
on its stack. There is one additional number that can be used in the calculator: the 
store. This is easy to emulate in a program by allotting another long word-called 
cates tore. 

The store allows you to save the display in a temporary location for retrieval with 
the recall key. Also, it's possible to add the display to the store with the sum key. Er
rors can occur if you try to place numbers in the store that can't be displayed in the 
current number base. Whenever any such error occurs, the word "Error" is displayed, 
and the program will prevent any further key entry until clear has been pressed. 

A constant, or K feature, is also provided. This allows the number in the display 
and the last entered operation to be saved as a constant and performed every time the 
equals button is pressed. The constant number and operation are thus performed on 
the number in the display whenever equals is pressed with a K operator set up. You 
can escape from this mode by pressing a new operator key, by pressing a close parenthe
sis, or by using the clear button. For example, entering + 2 K saves the number two 
and the operation (addition) in the constant register. Then, every time equals is hit, 
two is added to the number in the display. The K operator and constant number are, 
in reality, simply saved on the calculator's register stack like any other number. They 
are differentiated from ordinary numbers by having bit 3 set in the operation code. 
This is how a pending K operator is detected and cleared within the program. 

Normally, the four saved numbers in the internal stack are pointed to by register 
a4. This defines the start of the register save area. Because each register is four bytes 
long and there are four numbers, this area is 16 bytes in length. This is followed by 
four bytes containing an operation code and the parenthesis level to which it applies
this is where the K bit is also squeezed in. As register a4 points to the beginning of 
the saved numbers, 16 plus a4 points to the start of the saved operators. 

The lower half of register d6 is used as an index to point to the next position avail
able on the stack. This is initially zero, and can contain valid values up to three. Thus, 
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the next pending number to be saved to the internal register stack will be saved at 
O(a4,d6.W). The next operator to be saved along with this number will be stored at 
16(a4,d6.W). Note that this means that the last saved operator is to be found at 
15(a4,d6.W), or one less than the location of the next available position. 

A maximum of 15 parentheses can precede any number, and an error message is 
generated if this level is exceeded. An error message is also displayed if overflow oc
curs in any calculations. Note that this is true overflow-not carry. Subtracting one 
from zero is permitted; however, subtracting one from the largest negative number 
in any number base is not. Subtracting one from negative 128 in binary will, therefore, 
generate an error message. 

The calculator treats all numbers as signed, but the allowable magnitude of num
bers is determined by the number base in current use. This is selected by the DEC, 
HEX, OCT, and BIN keys. Pressing one of these keys will generate an error if the 
number won't fit in the selected base. 

Note that the gadget structures that comprise the calculator keys have numbers 
within their id fields that were judiciously chosen to make it easier to program this 
calculator model. For instance, the number keys 0 to 9 and A to Fall have consecutive 
id numbers. This makes it simple to decode the gadget selected by the mouse into a 
number button on the calculator. The same technique is also used to decode the opera
tor and some function keys. These keys return gadget id numbers that are used as 
offsets within the program to point to the routine dealing with that key's operation. 

Note that the operator keys are split into two groups: arithmetic operators and log
ical operators. This is necessary because logical operators are not allowed on decimal 
numbers. Once again, this follows the TI calculator's lead, is completely arbitrary, and 
could be changed if desired. In the program, these operations have been labeled bi
nary operations not because they operate on binary numbers, but because each one 
operates on two numbers. 

As in the gadget program in Chapter 11, you can elect to automatically assemble 
and link the program. Assuming that the source-code file is called calc.asm, enter these 
two lines into a script file called calc.exec for the Execute utility: 

assem calc.asm -c W160000 -i include -o catc.obj 

Then type: 

Exscute catc.exec 

You should do this until all typos have been weeded out of the source code; at that 
point you'll end up with an executable tool called calc. You'll also need to create an 
icon in a file called calc.info as described in Chapter 11. 

If you decide to become adventurous, there are some modifications that could im
prove the usefulness of this program. One, of course, is the inclusion of the algorithms 
to deal with the decimal point. You could also implement an addressable calculator 
store with multiple locations. These could even be saved in a file, and restored each 
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time the calculator is fired up. Without too much bother, it is possible to add some 
code to force the use of a particular text size. As it stands, the program uses the cur
rent font size as set up from the Preferences utility. The calculator will work properly 
with font sizes of both 60 and 80 without modifications. The only reason you might 
want to force a particular font width to be used is to prevent the user changing it after 
the calculator has started execution. 

You can see the effects of this if you start the calculator, change the font size from 
the Preferences window, and then return to the calculator and use it. The two font 
sizes can then be seen, one on top of the other, in the same application. A user is un
likely to change font sizes in mid-program, but the result is not something that is par
ticularly desirable. 

Apart from the lack of a decimal point, this program provides a fair emulation of 
a programmer's calculator. It allows you to perform many useful functions and con
versions that are helpful when you are programming a computer, especially in assem
bly language. It also gives you a perfect feel for how numbers are crunched for a purpose 
in the 68000. 

Fig. 13-1. The Calculator program. 

;calc.asm 

·-----------------------------------------------------------------------, 

Commodore Amiga 68000 Development System -- Programming example. 
Copyright 1986 by Jake Commander. 

·-----------------------------------------------------------------------, 

This program presents a calculator on the screen 

The calculator allows manipulation of numeric integers in four 
number bases:- decimal, hexadecimal, octal and binary. Each 
number is displayed as eight digits thus restricting input to 
32 bits in hexadecimal, 24 bits in octal, and 8 bits in binary. 

All quantities in the non-decimal number bases are sign-extended, 
i.e the highest bit in the display represents a sign bit 
which is extended if necessary to other number bases. 

Calculations may be nested up to four deep by using parentheses. 
Otherwise all operations are performed with the same priority. 

The calculator keys are selected by clicking with the mouse. 
The Amiga keyboard is not used in this program. 

Apart from the lack of decimal fractions, this program is modeled 
on the TI LCD Programmer calculator from Texas Instruments. 

, 
************************************************************************ 
* 
* 
* 

INCLUDE FILES 

************************************************************************ 

nolist ;don't list included files 
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INCLUDE "exec/types.i" 
INCLUDE "exec/alerts.i" 
INCLUDE "exec/ports.i" 
INCLUDE "libraries/dosextens.i" 
INCLUDE "intuition/intuition.i" 

;for following includes 
;to access ALERT macro 
;to access message structure 
;to access process structure 
;to access intuition structures 

************************************************************************ 
* 
* 
* 

EXTERNAL REFERENCES 

************************************************************************ 

xref 

xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 
xref 

list 

AbsExecBase 

LVOAlert 
-LVOCloseLibrary 
-LVOCloseWindow 
-LVODebug 
-LVODisplayBeep 
-LVOFindTask 
-LVOForbid 
-LVOGetMsg 
-LVOinput 
-LVOOpen 
-LVOOpenLibrary 
-LVOOpenWindow 
-LVOOutput 

LVOPrintiText 
-LVORefreshGadgets 
-LVOReplyMsg 
-LVOWait 
-LVOWaitPort 
-LVOWrite 

;turn on program listing 

;-----------------------------------------------------------------------
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Registers are used as follows: 

(dO - dl and aO -al are not preserved during system calls.) 

dO - dS are used as scratch registers. 

d6 is used to store the current operator and its parenthesis 
level in bits 16 to 23. Bits 0 to 15 point to an ascending 
register stack area consisting of four 32-bit numbers followed 
by four eight-bit operators and parenthesis levels. 

d7 contains the number displayed in the calculator. 

a4 points to the start of the register stack area. By 
using word-modification with d6, the appropriate number 
in the register stack can be accessed- (a4,d6.w) does this. 

a6 is used to point to the current library base (mostly the 
intuition library base except during program entry and exit.) 

a7 is the system's stack pointer. 



---------------------------------------

************************************************************************ 
* * PROGRAM STARTUP CODE 
* 
***-********************************************************************* 

Begin 
move.! a7,initialSP ;initial task stack pointer 
movea.l _AbsExecBase,a6 ;get exec library base 
move.! a6,ExecBase ;save exec lib base 

suba.l al,al ;set aO • 0 
jsr LVOFindTask (a6) ;get the address of this task 
movea.l dO,a4 ;task address to a4 

bsr openDOS ;attempt to open DOS library 

tst.l pr_CLI (a4) ; are we running under Workbench? 
beq WBStart 

If in CLI, send a message and abort 

movea.l 
jsr 
move.! 
lea 
move.! 
moveq 
jsr 

moveq.l 
bra 

dO,a6 
LVOOutput (a6) 

dO,dl 
msg,aO 
aO,d2 
tmsglen,d3 
_LVOWrite (a6) 

tlO,DO 
exit 

;ok if so 

;set DOS library pointer 
;get output handle 
;handle to dl for Write 
;point to output message 
;message pointer to d2 
;message length to d3 
;write message to output 

;failure code 
;return to CLI 

************************************************************************ 
* 
* 
* 

WORKBENCH STARTUP CODE 

************************************************************************ 

WBStart 

bsr 

bsr 
move.! 

openiNT 

waitmsg 
dO,returnMsg 

;open intuition library 

;wait for start message 
;save message for later 

************************************************************************ 
* 
* MAIN PROGRAM 
* 
************************************************************************ 

bsr 
lea 

Drawwind 
numstk,a4 

Perform a reset as per the CLR button 

;draw calc window to screen 
;point to number stack 
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rstcalc 

Start 

newchrs 

prdisp 

get key 

Find 

tryops 

moveq 
moveq 
clr.b 
clr.b 
clr.b 

numeric 

clr.b 

bsr 
move.b 

bsr 

out which 

move.b 
cmpi .b 
beq.s 
tst.b 
bne.s 

cmpi.b 
beq.s 
cmpi.b 
bne.s 
bsr 
bra.s 

pea 

cmpi.b 
bee 
cmpi.b 
bcs 

tO,d7 
tO,d6 
crntkey 
errflg 
newparen 

character entry 

chrcnt 

disp 
crntkey,prevkey 

getbutton 

key has been selected 

dO,crntkey 
f40,d0 
rstcalc 
errflg 
get key 

U5,d0 
get key 
U4,d0 
tryops 
chsign 
prdisp 

newchrs 

#32, dO 
operate 
U6,d0 
keys 

A number has been selected. 
Use it if it's legal for this number base 

lea 4(a7),a7 

cmpi.b tB,chrcnt 
beq.s get key 

tst.b chrcnt 
beq.s 1$ 

cmpi.b f10,base 
beq.s 1$ 
tst.l d7 
bmi.s get key 

1$ 
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;reset calculator display 
;reset calc reg stack pointer 
;reset current key 
;reset error flag 
;reset new parenthesis flag 

;reset numeric chr count 

;print calculator display 
;save previous key 

;get a calculator button 

;hold current key 
;CLR key? 
;reset calculator if so 
;displaying 'error'? 
;ignore other keys if so 

;decimal point? 
;ignore it if so 
;+/- key? 
;no 
;else change sign 
;and print display 

;place return address on stack 

;operation key? 
;do it if so 
;number key? 
;if not, deal with others 

;numbers don't need rts addr 

;already got 8 characters? 
;ignore number if so 

;in mid number? 
;if not, don't check minus 

;in decimal mode? 
;no minus check if so 
;display negative? 
;ignore keys if so 



andi.w 
cmpi.b 
bcs.s 
cmpi.b 
beq.s 

cmpi.b 
bcs.s 
cmpi.b 
beq 

cmpi.b 
bcs.s 
cmpi.b 
beq 

numok 
tst.b 
bne.s 
cmpi.b 
beq.s 

bsr 
1$ 

moveq 
tst.b 
beq 

notchr1 
move.w 
moveq 
move.b 

Multiply display 

bsr 
clr.b 

cmpi.b 
bne.s 
tst.l 
bpl.s 
sub.w 
bra.s 

1$ 
add.w 

#$0F,d0 
#2,d0 
numok 
#2,base 
get key 

#B,dO 
numok 
#B,base 
get key 

#lO,dO 
numok 
UO,base 
get key 

chrcnt 
notchr1 
UO,prevkey 
1$ 

pus hop 

#0 1 d7 
dO 
prdisp 

d0,-(a7) 
#O,dO 
base, dO 

by the number base 

multop 
errflg 

#10,base 
1$ 
d7 
1$ 
(a7)+,d7 
3$ 

(a7) +,d7 

;extract number from key 
;number greater than 1? 
;always accept 0 or 1 
;in binary mode? 
;if so, ignore number > 1 

;number greater than 7? 
;up to 7 ok if not binary 
;~n octal mode? 
;if so, ignore number > 7 

;number greater than 9? 
;~p to 9 ok if not octal 
;~n decimal mode? 
;if so, ignore number > 9 

;first digit of number? 
;no 
;previous key- • (' ? 
;don't push op if so 

;else push op on reg stack 

;initialize display = 0 
;leading zero? 
;if so, don't shift display 

;save current digit 
;reset high byte in low word 
;get num base to low word 

;do multiply 
;in case high bit on in hex 

;in decimal mode? 
;add in digit if not 
;negative decimal t in display 
;no, add new digit 
;else subtract new digit 
;skip add 

;add in keyed number 

Sign-extend binary and octal to 32 bits after number is entered 

3$ 

4$ 

cmpi.b 
bne.s 
ext.w 
ext.l 
bra.s 

#2,base 
4$ 
d7 
d7 
5$ 

;binary mode? 
;no, see if octal 
;sign-extend to 16 bits 
;sign-extend to 32 bits 
;number all ready 
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cmpi.b f8,base ;octal mode? 
bne.s 5$ ;no, use number as is 
swap d7 ;prepare to sign-extend 
ext.w d7 ;sign-extend to last byte 
swap d7 ;put right way round 

5$ 
addq.b f1,chrcnt ;increment chr count 
bra prdisp ;show calculator display 

Function keys not dealt with previously are now used 
as pointers to the address performing their function 

keys 

dot able 

subq 
add.w 
move.w 
jmp 

dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 

+/- key 
; 
chsign 

tst.l 
beq.s 
neg.l 
svs 
bsr 
move.b 

1$ 
rts 

; HEX key 

hex dec 
moveq 
bra.s 

DEC key 

decimal 
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moveq 
bra.s 

U,dO 
dO,dO 
dotable(dO),dO 
dotable (dO) 

decimal-dotable 
hexdec-dotable 
octal-dotable 
binary-dot able 
equals-dot able 
clentry-dotable 
store-dot able 
recall-dotable 
sum-dot able 
openp-dotable 
closep-dotable 
notop-dotable 
Kop-dotable 

d7 
1$ 
d7 
errflg 
disp 
dispcnt,chrcnt 

U6,d0 
setbase 

UO,dO 
setbase 

;align to jump-table start 
;*2 bytes per jump index 
;get index for key's address 
;jump to key handler 

;display - 0? 
;don't bother if so 
;else 2's complement display 
;set error flag if overflow 
;do display 
;update display chr count 

;set hexadecimal radix 

;set decimal radix 



; OCT key 

octal 
moveq 
bra.s 

BIN key 

binary 
moveq 

setbase 
move.b 

#B,dO 
setbase 

#2,d0 

dO,base 

* After either HEX, DEC, OCT, or BIN has been 
* selected, the gadget address in a2 is used to 
* highlight the selected button by setting the 
* gadget's text to white. Before doing this, the 

;set octal radix 

;set binary radix 

;store number base 

* previously selected button's text is set orange. 

move.! 
move.! 
move.! 
move.b 
move.l 
move.b 

base gadget,aO 
a2,base gadget 
gg GadgetText(aO),al 
tl;it FrontPen(al) 
gg GadgetText(a2),al 
t3;it_FrontPen(al) 

refresh all button gadgets 

- key 

equals 

1$ 

2$ 

lea 
movea.l 
suba.l 
jsr 

rts 

tst.w 
beq.s 
bsr.s 
btst.b 
bne.s 
bra.s 

moveq 

rts 

; CE key 

clentry 

clout 

tst.l 
bmi. s 
moveq 

rts 

Gadgetl,aO 
windptr,al 
a2,a2 
_LVORefreshGadgets(a6) 

d6 
1$ 
closepl 
t3,15(a4,d6.w) 
2$ 
equals 

#O,d6 

d6 
clout 
tO,d7 

;previous current-base gadget 
;reset current-base gadget 
;previous gadget text address 
;previous gadget text to white 
;selected gadget text address 
;selected gadget text to orange 

;1st gadget to refresh 
;point to our window 
;set a2 = 0 
;redisplay gadgets 

;register stack empty? 
;all done if so 
;else do binary operation 
;got a K operator? 
;if so, exit after K op 
;do until reg stack empty 

;reset crnt op and reg stk 

;operator awaiting stack? 
;yes, leave display alone 
;else clear display number 
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STO key 

store 
move.l 
rts 

RCL key 

recall 
move.l 
bra 

SUM key 

sum 

( key 

open};) 

1$ 

2$ 

) key 

closep 

closep1 
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add.l 
svs 
rts 

cmpi.b 
beq.s 

bsr 
st 
andi.l 

move.l 
andi.l 
cmpi.l 
bne.s 

st 

addi.l 
rts 

bsr.s 
tst.b 
beq.s 

move.b 
andi.l 
swap 

andi.l 
or.l 

d7,calcstore 

calcstore,d7 
pus hop 

d7,calcstore 
errflg 

HO,prevkey 
1$ 

pus hop 
newparen 
#$FF0FFFFF,d6 

d6,d0 
#$FOOOOO,d0 
#$FOOOOO,d0 
2$ 

errflg 

#$100000,d6 

tstresK 
d6 
closout 

15{a4,d6.w),d0 
#$FO, dO 
dO 

#$FFFFF,d6 
dO,d6 

;display register to store 

;store to display register 
;pending op to stack 

;store = disp + store 
;error if overflow 

;previous key= '(' ? 
;don't push op if so 

;crnt op to register stack 
;flag new parentheses open 
;reset parenthesis level 

;parenthesis count to dO 
;extract paren count 
;paren count at max (15)? 
;no, all ok 

;else set error flag 

;increment paren count 

;test and reset K if set 
;register stack empty? 
;nothing to do if so 

;get previous paren count 
;extract paren count 
;move paren count up 

;mask out old paren count 
;or in new paren count 



bsr 
move.l 
andi.l 
beq.s 

tst.w 
bne.s 
move.l 

1$ 
subi.l 

closout 
rts 

NOT key 

notop 

10Ut 

K key 

<op 

Kout 

tstresK 

1$ 

operate 

cmpi.b 
beq.s 
not.l 

rts 

btst.b 
bne.s 

bsr 
-tst.b 
beq.s 

lsl.w 
move.l 
move.l 
lsr.w 

move.l 
andi.b 
bset.b 
clr.b 

rts 

btst.b 
beq.s 

bclr.b 
clr.w 

rts 

cmp.b 
bcc.s 

binop 
d6,d0 
f$FOOOOO,d0 
closout 

d6 
1$ 
t$100000,d6 

f$100000,d6 

UO,base 
nout 
d7 

f3,15(a4,d6.w) 
Kout 

pus hop 
d6 
Kout 

t2,d6 
-4(a4,d6.w),d0 
d7, -4 (a4,d6 .w) 
f2, d6 

dO, d7 
#7, 15 (a4,d6 .w) 
#3, 15 (a4, d6. w) 
newparen 

f3,15(a4,d6.w) 
1$ 

f3, 15 (a4,d6 .w) 
d6 

f$24,d0 
1$ 

-------------------------------

;do binary operation 
;paren count to dO 
;extract paren count 
;if already at zero 

;at stack bottom? 
;if not, decrement par en 
;else ensure paren cnt 

;decrement paren count 

;in decimal mode? 
;no NOT if so 

cnt 
0 

;l's complement of display 

;already got K operator? 
;if so, do nothing 

;any pending op to stack 
;op on stack? 
;out if no op on stack 

;d6 * 4 to align long words 
;hold register from stack 
;display to register stack 
;realign d6 

;replace display 
;reset paren count 
;set K flag 
;reset new paren flag 

;in Konstant mode? 
;no 
; else ..• 
; reset K flag 
;reset register stk ptr 

;is it a logic op? 
;no 

159 



cmpi.b 
beq.s 

1$ 
bsr.s 
bsr.s 

lsl.w 
move.l 
lsr.w 

move.b 
andi.l 
swap 
andi.b 
or.b 
swap 
bset 

ope rout 
rts 

binop 
tst.b 
beq.s 
clr.b 
rts 

1$ 
tst.b 
beq.s 

move.l 
swap 
andi.b 
move.b 
andi.b 
cmp.b 
bne.s 

move.l 
bsr.s 
move.l 
btst.b 
bne.s 

subq 
bin out 

rts 

UO,base 
ope rout 

tstresK 
binop 

#2, d6 
d7,0(a4,d6.w) 
t2,d6 

crntkey,dO 
#7 I dO 
d6 
#$FO,d6 
dO,d6 
d6 
#31,d6 

newparen 
1$ 
newparen 

d6 
bin out 

d6,d0 
dO 
f$FO,d0 
15(a4,d6.w) ,dl 
#$FO,dl 
dO, d1 
bin out 

d6,-(a7) 
opdo 
(a7)+,d6 
#3,15(a4,d6.w) 
bin out 

U,d6 

;in decimal mode? 
;no logic ops on decimal 

;test and reset K op if set 
;do pending binary operation 

;d6 * 4 to align long words 
;save display on reg stack 
;realign d6 

;current calculator key 
;extract op from key 
;current op to lower half 
;remove old op 
;put current op in place 
;realign d6 
;flag op awaiting stack 

;just opened new parens? 
;no 
;else reset flag 
;and do nothing 

;register stack empty? 
;yes, no op to do 

;use dO for paren info 
;align paren count to lower 
;extract current paren count 
;get stacked operation 
;get its parenthesis level 
;correct parenthesis level? 
;no, don't do op yet 

;save d6 on user stack 
;do operation on stack 
;restore d6 
;K flag set? 
;don't pop op if so 

;decrement register stk ptr 

;************************************************************************** 

This is where the actual number-crunching is performed 
The key selected is used as an offset to a table of 
operations which perform the actual work 

; 
;************************************************************************** 

opdo 
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move.b 
andi.w 

15(a4,d6.w),d0 
t7,d0 

; get stacked op 
;extract op 



opdol 

opt able 

cmp.w 
bcc.s 
cmpi.b 
bne.s 
st 
rts 

add.w 
move.w 
subq 
lsl.w 
move.l 
lsr.w 
jmp 

dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 

SHF key 

shfop 

shfl 

shf2 

bsr 

tst.l 
bpl.s 
neg.l 
lsr.l 
bra.s 

lsl.l 

move.l 
rts 

OR key 

crop 
or.l 
rts 

AND key 

andop 
and.l 
rts 

i4,d0 
opdol 
ilO,base 
opdol 
errflg 

dO,dO 
optable(dO),dl 
il,d6 
i2,d6 
0(a4,d6.w),d0 
i2,d6 
optable (dl) 

shfop-optable 
orop-optable 
andop-optable 
xorop-optable 
divop-optable 
multop-optable 
subop-optable 
addop-optable 

ckkop 

d7 
shfl 
d7 
d7,d0 
shf2 

d7,d0 

dO,d7 

dO,d7 

dO,d7 

;is it a logic op? 
;no 
;in decimal mode? 
;no, so ok 
;no can do 

;*2 (use op as word index) 
;get index for op jump 
;align d6 to crnt stk reg 
:*4 to align with long wordc 
;ready previous number in dC 
;realign d6 
;jump to op 

;chk number order for K ops 

;shift count negative? 
; if left shift 
;convert to pas right shift 
;do shift op 

;do shift op 

;result to display register 

;do or op 

;do and op 
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; XOR key 

xorop 

I key 

divop 

1$ 

2$ 

3$ 

4$ 

5$ 

6$ 

7$ 

divout 

1$ 

eor.l 
rts 

bsr 

tst.l 
seq 
beq.s 

bsr 

cmp.l 
bne.s 
moveq 
bra.s 

cmp.l 
bcs.s 
moveq 
rts 

moveq 

addq 
asl.l 
bmi.s 
cmp.l 
bcc.s 

lsr.l 
moveq 

sub.l 
bmi.s 
addq 
bra.s 

add.l 

subq 
beq.s 
asl.l 
asr.l 
bra.s 

move.l 

tst.b 
beq.s 
neg.l 

rts 

dO,d7 

ckkop 

d7 
errflg 
divout 

dosigns 

dO, d7 
1$ 
U,d2 
divout 

dO,d7 
2$ 
to, d7 

tO,d3 

U,d3 
U,d7 
4$ 
d7, dO 
3$ 

U,d7 
to, d2 

d7, dO 
6$ 
U,d2 
7$ 

d7,d0 

tl,d3 
divout 
U,d2 
U,d7 
5$ 

d2,d7 

sgnflg 
1$ 
d7 

;do xor op 

;chk number order forK ops 

;divisor = 0 ? 
;divide by zero error if so 
;out if error 

;change numbers to positive 

;divisor = dividend ? 
;no, not special case 
;else result is 1 
;see about sign 

;dividend > divisor? 
;yes, result is > 0 
;else result is zero 
;sign doesn't matter 

;initialize iteration count 

;increment iteration count 
;see if d7 goes > dO 
;it did if now negative 
;d7 > dO ? 
;no, try again 

;readjust divisor 
;initialize quotient 

;divisor goes in? 
;no 
;else record it 

;restore dividend 

;done all bits? 
;yes 
;quotient * 2 
;divisor I 2 
;next round 

;move quotient to result 

;should result be negative? 
;no, exit 
;else change sign of result 



. , 
* key 

multop 
bsr.s 
move.w 
move.w 
swap 
swap 
mulu 
mulu 
mulu 
add.w 
swap 
clr.w 
add.l 
tst.l 
smi 

tst.b 
beq.s 
neg.l 

1$ 
rts 

- key 

subop 
bsr.s 

sub.l 
svs 
move.l 
rts 

+ key 

addop 
add.l 
svs 
rts 

; 

do signs 
d7,d2 
d0,d3 
d7 
dO 
d2,d0 
d3,d7 
d3,d2 
dO,d7 
d7 
d7 
d2,d7 
d7 
errfl-J 

sgnflg 
1$ 
d7 

ckkop 

d7,d0 
errflg 
dO,d7 

d0,d7 
errflg 

;make both numbers positive 
;for lower half multiply 
;ditto 
;upper to lower 
;ditto 
;do long multiply ... 

;add products 
;lower to upper 
;clear lower 
;final product 
;did it overflow? 
;set error if so 

;should result be negative? 
;no, exit 
;else change sign of result 

;chk number order for K ops 

;do subtract op 
;error if overflow 
;put result in place 

;do addition op 
;error if overflow 

Thfs routine changes both numbers in DO and D7 to positive quantities. 
The sign of a resultant multiplication or division of these two 
numbers is recorded in sgnflg for use by the multiply/divide routines. 

designs 
sgnflg 
dO,dl 

;default sign = positive 
;move dO to a work register 
;move d7 to a work register 
;extract sign bit 
;extract sign bit 

clr.b 
move.l 
move.l 
andi.l 
andi.l 
eor.l 
rol.l 

d7,d2 
#$80000000,dl 
#$80000000,d2 
dl,d2 
U,d2 

;see if signs are different 
;get difference bit to bit 0 
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1$ 

2$ 

move.b d2, sgnflg ;set if result 

tst.l dO ;dO positive? 
bpl.s 1$ ;yes 
neg.l dO ;else make it 

tst.l d7 ;d7 positive? 
bpl.s 2$ ;yes 
neg.l d7 ;else make it 

rts 

This routine reverses the operands if a K operation 
is being performed. 

negative 

positive 

positive 

ckkop 
#3,16(a4,d6.w) 
1$ 

;is this a K operation? 
;no 

btst 
beq.s 
exg d7,d0 ;else numbers are reversed 

1$ 
rts 

Save the current calculator operation on the stack immediately after 
the four registers, i.e. 16 bytes after. 

pus hop 
cmpi.b #4,d6 ;reg stk ptr at max (4)? 
bcs.s pushok ;ok if less 
st errflg ;too many numbers 
rts 

pushok 
tst.l d6 ;op awaiting stack? 
bpl.s pushout ;out if no pending op 

move.l d6,d5 ;save op from d5 
swap d5 ;move current op down 
move.b d5,16(a4,d6.w) ;save current level and op 

addq U,d6 ;increment register stk ptr 
andi.l #$F0FFFF,d6 ;reset op and pending bit 

pushout 

164 

rts 

Display register D7 in the current number base. 
An error message is generated if this is not possible. 

disp 
tst.b 
bne.s 

move.l 
clr.b 
tst.l 

errflg 
disperr 

d7,d0 
sgnflg 
dO 

;error flag set? 
;display 'error' if so 

;use dO as temp test reg 
;reset sign flag 
;negative number? 



1$ 

2$ 

disp1 

3$ 

disp2 

hexd7 

set err 

disperr 

bpl.s 
neg.l 
st 

cmpi.b 
bne.s 

cmpi.l 
bhi 
bne.s 
tst.b 
bpl.s 

bsr 
bra.s 

cmpi.b 
bne.s 
cmpi.l 
bhi 
bne.s 
tst.b 
bpl.s 

bsr.s 
bra.s 

cmpi.b 
bne.s 

cmpi.l 
bcc.s 

bsr 
bra.s 

bsr.s 
bra.s 

st 

lea 
bra.s 

printstr 
lea 

printst1 
lea 

pad 
moveq 

move.b 
move.b 
dbra 

1$ 
dO 
sgnflg 

t2,base 
disp1 

t128,d0 
set err 
2$ 
sgnflg 
set err 

binstr 
printstr 

#S,base 
disp2 
tSOOOOO,dO 
set err 
3$ 
sgnflg 
set err 

octstr 
printstr 

UO,base 
hexd7 

tlOOOOOOOO,dO 
set err 

decstr 
printstr 

hexstr 
printstr 

errflg 

errstr+9,al 
printst1 

numstr+9,a1 

dispstr+18,a2 
t8,d4 

t' ',- (a2) 
- (a1) ,- (a2) 
d4,pad 

register a2 now points to dispstr 

;no 
;convert to pos for tests 
;and set sign flag 

;in binary mode? 
;no, try octal 

;outside binary num range? 
;error if so 
;ok if lower 
;if at max, must be negative 
;else error 

;convert d7 to binary string 
;print it in calc display 

;in octal mode? 
;no, try decimal 
;outside octal num range? 
;error if so 
;ok if lower 
;if at max, must be negative 
;else error 

;convert d7 to octal string 
;print it in calc display 

;in decimal mode? 
;no, must be hex 

;num beyond decimal range? 
;error if so 

;cnvrt d7 to decimal string 
;print it in calc display 

;convert d7 to hex string 
;print hex in calc display 

;set error flag 

;point past error string end 
;print it 

;point past number string end 

;point past display string end 
;pad nine characters 

;pad string with space 
;put character into string 
;do all nine characters 
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binstr 

octstr 

hexstr 

strchrs 

dis prot 

no rot 

noltr 

decstr 

1$ 

nxtpwr 

decpowr 
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lea 
move.l 
movea.l 
movea.l 
moveq 
moveq 
jsr 
rts 

moveq 
moveq 
bra.s 

moveq 
moveq 
bra.s 

moveq 
moveq 

lea 
moveq 
move.l 
bra.s 

lsr.l 

move.b 
and.b 
ori.b 
cmpi.b 
bcs.s 
addi.b 

move.b 
dbra 
bra.s 

move.l 
tst.b 
beq.s 
neg.l 

moveq 
lea 
lea 

moveq 

addq 
sub.l 
bcc.s 
subq 
add.l 

g0itxt,a1 
a2,it IText(a1) 
windptr,aO 
wd RPort(aO),aO 
to-; do 
tO,d1 
_LVOPrintiText(a6) 

U,d1 
U,d2 
strchrs 

t3,d1 
t7, d2 
strchrs 

t4,d1 
f$F,d2 

numstr+9,a2 
t7,d0 
d7,-(a7) 
no rot 

d1,d7 

d7,d3 
d2,d3 
f$30,d3 
f$3A,d3 
noltr 
t7,d3 

d3·,-(a2) 
dO, disprot 
leadzer 

d7,-(a7) 
sgnflg 
1$ 
d7 

t7,d0 
numstr+1,a2 
pwrs10,a1 

t'O',d2 

U,d2 
(a1),d7 
decpowr 
U,d2 
(a1),d7 

;intuition text structure ptr 
;emplace text pointer 
;opened window structure ptr 
;pointer to window's rastport 
; left offset 
; right offset 
;print display string 

;t bits per digit in binary 
;mask for each binary digit 
;convert digits to ascii 

;t bits per digit in octal 
;mask for each octal digit 
;convert digits to ascii 

;f bits per digit in hex 
;mask for each hex digit 

;point to string end + 1 
;convert 8 digits 
;hold display on stack 
;don't rotate first time 

;rotate display register 

;form ascii character in d3 
;extract necessary bits 
;make an ascii digit 
;digit greater than 9 ? 
;no, digit is ok 
;else make it A to F 

;store character in string 
;do all characters 
;now remove leading zeros 

;save display reg on stack 
;negative decimal number? 
;no 
;else make positive 

;convert 8 decimal digits 
;point past sign 
;point to powers of ten 

;initialize d2 to ascii '0' 

;increment ascii digit 
;display contains this t ? 
;again if not overstepped 
;else readjust ascii digit 
;readjust display remainder 



leadzer 

testzer 

donelz 

donestr 

move.b 
lea 
dbra 

lea 
move.b 
moveq 

cmpi.b 
bne.s 
move.b 
dbra 
lea 

addq.b 
move.b 

cmpi.b 
bne.s 

tst.b 
beq.s 

move.b 

move.l 
rts 

d2, (a2) + 
4(al),al 
dO,nxtpwr 

numstr,a2 
f' ',(a2)+ 
t6,d0 

#'0', (a2)+ 
donelz 
f' ',-1 (a2) 
dO,testzer 
l(a2),a2 

f2,d0 
dO,dispcnt 

UO,base 
donestr 

sqnflg 
donestr 

1'-' ,-2 (a2) 

(a7) +,d7 

;ascii digit to string 
;next power of ten 
;do all 8 digits this way 

;point to string start 
;replace any previous minus 
;remove up to 7 zeros 

;leading zero? 
;no, all done 
;else replace it with space 
;try next digit 
;make way for possible sign 

;get f chars in display 
;save result 

;in decimal mode? 
;no, string finished 

;negative decimal number? 
;no, string finished 

;else implant minus sign 

;restore display register 

*************************************************************************** 
* 
* 
* 

EVENT HANDLING 

**************************************************************************** 

This routine only returns when a calculator button has been 
selected. The number of the selected button (a gadget id) 
is returned in register dO. 

getbutton 
movea.l 
movea.l 
move.l 
moveq 
move.b 
rnoveq 
asl.l 
rnovea.l 
jsr 

rnovea.l 
jsr 
rnovea.l 
rnove.l 
rnove.w 
rnovea.l 
jsr 

windptr,aO 
wd UserPort(aO),aO 
a0~-(a7) 
tO,dl 
MP SIGBIT(aO),dl 
U~dO 
dl,dO 
ExecBase,a6 
_LVOWait (a6) 

(a7)+,a0 
LVOGetMsg (a6) 

dO,al 
irn Class(al),d4 
irn-Code(al),d5 ;code 
irn-IAddress(al),a2 
_LVOReplyMsg (a6) 

;UserPort addr to aO 

;UserPort addr to aO 

;message ptr to al 
;class 

;address if gadget 

movea.l 
crnpi.l 

IntBase,a6 
#CLOSEWINDOW,d4 

;Ready to use intuition lib 
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beq 

crnpi.l 
bne.s 
move.w 
rts 

bye 

#GADGETUP,d4 
getbutton 
gg_GadgetiD(a2),d0 

;unknown message 
;get id of gadget 

********************************************************************* 

SETUP AND DRAW CALCULATOR WINDOW 
, 
'*************************************************************************** , 

DrawWind 
movea.l 
lea 
jsr 
move.l 

rts 

;close down 

bye 

exit 

;close 

1$ 

2$ 

movea.l 
movea.l 
jsr 
moveq.l 

movea.l 
move.l 

libraries 

movea.l 
move.l 
beq.s 
movea.l 
jsr 

move.l 
beq.s 
movea.l 
jsr 

move.l 
beq.s 

IntBase,a6 
NewWind,aO 

LVOOpenWindow(a6) 
dO,windptr 

IntBase,a6 
windptr,aO 

LVOCloseWindow(a6) 
tO,dO 

initialSP,a7 
d0,-(a7) 

ExecBase,a6 
DOSBase,dO 
1$ 
dO,a1 
_LVOCloseLibrary(a6) 

IntBase,dO 
2$ 
dO,a1 
_LVOCloseLibrary(a6) 

returnMsg,dO 
3$ 

;return startup message to parent 

;use intuition library base 
;pointer to open window 
;close window 
;Successful return code 

;restore stack pointer 
;save return code 

;use exec libraries 
;DOS library loaded? 
;skip close if DOS not open 
;lib base into a1 
;close DOS 

;intuition library loaded? 
;skip if intuition not open 
;lib base into a1 
;close intuition 

;started from workbench? 
;skip if from CLI 

jsr LVFord(a6) ;so workbench won't UnLoadSeg 
-movea.l returnMsg,al ;startup message pointer 

3$ 
jsr _LVOReplyMsg(a6) ;reply to initial message 

move.l 
rts 

(a7) +,dO ;restore success code 
;back to operating system 

;*************************************************************************** 
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noDOS 
ALERT 
moveq.l 
bra.s 

(AG OpenLib!AO DOSLib) 
tlOO,dO -
exit 

;*************************************************************************** 
This routine gets the message that workbench will send to us 

; called with task id in A4 

waitmsg 
lea pr_MsgPort(a4),a0 ;our process base 
jsr LVOWaitPort (a6) 
lea pr_MsgPort(a4),a0 ;our process base 
jsr _LVOGetMsg(a6) 
rts 

;*************************************************************************** 
Open the DOS library and save its base pointer 

openDOS 
lea 
move.l 
jsr 
move.l 
beq 
rts 

DOS Lib,al 
#LIBRARY VERSION,dO 

LVOOpenLibrary(a6) 
dO,DOSBase 
noDOS 

;save DOS library base 

;*************************************************************************** 
Open the intuition library and save its base pointer 

open INT 
lea 
move.l 
jsr 
move.l 
rts 

INT Lib,al 
#0, dO 

LVOOpenLibrary(a6) 
dO,IntBase 

;*************************************************************************** 

PROGRAM'S DATA AREA 

;*************************************************************************** 

cnop 0,2 ;must be on word boundary 

crntkey dc.b 0 ;current calculator key 
prevkey dc.b 0 ;previous calculator key 
chrcnt dc.b 0 ;t characters entered 
dispcnt dc.b 0 ;t characters in display 
errflg dc.b 0 ;set non-zero if error 
sgnflg dc.b 0 ;non-zero if decimal minus 
newparen dc.b 0 ;non-zero if opened paren 
base dc.b 16 ;current number base 
base_gadget dc.l Gadget2 ;number-base gadget address 
calcstore dc.l 0 ;place for calculator store 

numstk dcb.l 5,0 ;calc's number & ops stack 
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pwrslO dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 

10000000 
1000000 
100000 
10000 
1000 
100 
10 
1 

*********************************************************************** 

ExecBase 
DOSBase 
IntBase 

ihitialSP 
returnMsg 

winptr 

NewWind 
LeftEdge 
TopEdge 
Width 
Height 
DetailPen 
BlockPen 
IDCMPFlags 
Flags 
FirstGadget 
CheckMark 
Title 
Scren 
BitMp 
Min Width 
MinHeight 
MaxWidth 
MaxHeight 
Type 

dc.l 
dc.l 
dc.l 

dc.l 
dc.l 

dc.l 

equ 
dc.w 
dc.w 
dc.w 
dc.w 
dc.b 
dc.b 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 

0 
0 
0 

0 
0 

0 

* 
40 
20 
221 
155 
-1 
-1 
CLOSEWINDOW!GADGETUP 
WINDOWCLOSE!SMART REFRESH!ACTIVATE!WINDOWDRAG 
GadgetO -
0 
wtitle 
0 
0 
0 
0 
0 
0 
WBENCHSCREEN 

The following equates set the position and spacing of 
the gadgets representing the calculator buttons. 

GWIDE equ 32 ;width of calculator buttons 
GHIGH equ 9 ;height of calculator buttons 
GMINLEFT equ 20 ;left-hand button margin 
HGAP equ 5 ;horizontal button spacing 
VGAP equ 5 ;vertical button spacing 
GLEFT set GMINLEFT ; initial button left coordinate 
GTOP set 40 ;initial button top coordinate 
KEY COL equ 1 ;color of each key's text 

GadgetO 
dc.l Gadget1 ;pointer to next gadget 
dc.w GLEFT ; left edge 
dc.w 15 ;top edge 
dc.w 180 ;width 
dc.w 15 ;height 
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borderO 

gOxy 

gOitxt 

Gadgetl 

border1 

dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.w 
dc.w 
dc.b 
dc.b 
dc.b 
dc.b 
dc.l 
dc.l 

dc.w 
dc.w 
dc.w 
dc.w 
dc.w 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.w 
dc.w 
dc.b 
dc.b 

GADGHNONE 
0 
BOOLGADGET 
borderO 
0 
0 
0 
0 
0 
0 

0 
0 
1 
0 
RP JAM1 
5 
gOxy 
0 

-1,-1 
-1,20 
180,20 
180,-1 
-1,-1 

1 
0 
RP JAM2 
20-
23 
0 
dispstr 
0 

Gadget2 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border1 
0 
glitxt 
0 
0 
1 
0 

0 
0 
1 
0 

;flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

; left edge 
;top edge 
;front pen 
;back pen 
;draw mode 
;t of coords 
;pointer to 1st coord 
;pointer to next border 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
; font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;left edge 
;top edge 
;front pen 
;back pen 
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g1xy 

glitxt 

GLEFT 

Gadget2 

g2itxt 

GLEFT 

Gadget3 
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dc.b 
dc.b 
dc.l 
dc.l 

dc.w 
dc.w 
dc.w 
dc.w 
dc.w 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 

RP JAM1 
5 
g1xy 
0 

-1,-1 
-1,GHIGH 
GWIDE,GHIGH 
GWIDE,-1 
-1,-1 

KEY COL 
0 
RP JAM1 
1 
1 
0 
g1txt 
0 

GLEFT+GWIDE+HGAP 

Gadget3 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
borderl 
0 
g2itxt 
0 
0 
2 
0 

3 
0 
RP JAM1 
1 
1 
0 
g2txt 
0 

GLEFT+GWIDE+HGAP 

Gadget4 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 

;draw mode 
;t of coords 
;pointer to 1st coord 
;pointer to next border 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
; font ptr ( dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
; left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
; font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
; left edge 
;top edge 
;width 
;height 
; flags 



----------------------

dc.w RELVERIFY ;activation flags 
dc.w BOOLGADGET ; gadget type 
dc.l borderl ;ptr to border structure 
dc.l 0 
dc.l g3itxt ;ptr to text structure 
dc.l 0 
dc.l 0 
dc.w 3 ;id 
dc.l 0 

g3itxt 
dc.b KEY COL ;front pen 
dc.b 0 ;back pen 
dc.b RP JAMl ;draw mode 
dc.w 1 ;left edge 
dc.w 1 ;top edge 
dc.l 0 ; font ptr (dflt) 
dc.l g3txt ;text pointer 
dc.l 0 ;ptr to nxt txt structure 

GLEFT set GLEFT+GWIDE+HGAP ;set next gadget rightward 

Gadget4 
dc.l GadgetS ;pointer to next gadget 
dc.w GLEFT ; left edge 
dc.w GTOP ;top edge 
dc.w GWIDE ;width 
dc.w GHIGH ;height 
dc.w GADGHCOMP ; flags 
dc.w RELVERIFY ;activation flags 
dc.w BOOLGADGET ;gadget type 
dc.l border1 ;ptr to border structure 
dc.l 0 
dc.l g4itxt ;ptr to text structure 
dc.l 0 
dc.l 0 
dc.w 4 ;id 
dc.l 0 

g4itxt 
dc.b KEY COL ;front pen 
dc.b 0 ;back pen 
dc.b RP JAM1 ;draw mode 
dc.w 1 ;left edge 
dc.w 1 ;top edge 
dc.l 0 ; font ptr (dflt) 
dc.l g4txt ;text pointer 
dc.l 0 ;ptr to nxt txt structure 

GLEFT set GLEFT+GWIDE+HGAP ;set next gadget rightward 

GadgetS 
dc.l Gadget6 ;pointer to next gadget 
dc.w GLEFT ; left edge 
dc.w GTOP ;top edge 
dc.w GWIDE ;width 
dc.w GHIGH ;height 
dc.w GADGHCOMP ; flags 
dc.w RELVERIFY ;activation flags 
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g5itxt 

GTOP 
GLEFT 

Gadget6 

g6itxt 

GLEFT 

Gadget7 
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dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 
set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 

BOOLGADGET 
border1 
0 
g5itxt 
0 
0 
40 
0 

KEY COL 
0 
RP JAM1 
1 
1 
0 
g5txt 
0 

GTOP+GHIGH+VGAP 
GMINLEFT 

Gadget7 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border! 
0 
g6itxt 
0 
0 
7 
0 

KEY COL 
0 
RP JAMl 
1 
1 
0 
g6txt 
0 

GLEFT+GWIDE+HGAP 

GadgetS 
c;3LEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 

;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
; left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget lower 
;initialize gadget left coord 

;pointer to next gadget 
; J,eft edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
; left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 



g7itxt 

GLEFT 

GadgetS 

g8itxt 

GLEFT 

Gadget9 

dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 

border1 
0 
g7itxt 
0 
0 
8 
0 

KEY COL 
0 
RP JAM1 
1-
1 
0 
g7txt 
0 

GLEFT+GWIDE+HGAP 

Gadget9 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border1 
0 
g8itxt 
0 
0 
9 
0 

KEY COL 
0 
RP JAM1 
1 
1 
0 
g8txt 
0 

GLEFT+GWIDE+HGAP 

Gadget10 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
bor,der1 
0 

;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
; left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr.to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
; left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
; left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 
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g9itxt 

GLEFT 
GadgetlO 

glOitxt 

GTOP 
GLEFT 

Gadgetll 
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dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc~l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 
set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

g9itxt 
0 
0 
10 
0 

KEY COL 
0 
RP JAM1 
1 
1 
0 
g9txt 
0 

GLEFT+GWIDE+HGAP 

Gadgetll 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border1 
0 
g10itxt 
0 
0 
11 
0 

KEY COL 
0 
RP JAMl 
1-
1 
0 
glOtxt 
0 

GTOP+GHIGH+VGAP 
GMINLEFT 

Gadget12 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border1 
0 
g11itxt 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
; left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget lower 
;initialize gadget left coord 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 



dc.l 0 
dc.l 0 
dc.w 32 ;id 
dc.l 0 

g1litxt 
dc.b KEY COL ;front pen 
dc.b 0 ;back pen 
dc.b RP_JAM1 ;draw mode 
dc.w 1 ; left edge 
dc.w 1 ;top edge 
dc.l 0 ; font ptr (dflt) 
dc.l glltxt ;text pointer 
dc.l 0 ;ptr to nxt txt structure 

GLEFT set GLEFT+GWIDE+HGAP ;set next gadget rightward 

Gadget12 
dc.l Gadget13 ;pointer to next gadget 
dc.w GLEFT ;left edge 
dc.w GTOP ;top edge 
dc.w GWIDE ;width 
dc.w GHIGH ;height 
dc.w GADGHCOMP ; flags 
dc.w RELVERIFY ;activation flags 
dc.w BOOLGADGET ;gadget type 
dc.l border1 ;ptr to border structure 
dc.l 0 
dc.l g12itxt ;ptr to text structure 
dc.l 0 
dc.l 0 
dc.w 29 ;id 
dc.l 0 

g12itxt 
dc.b KEY COL ;front pen 
dc.b 0 ;back pen 
dc.b RP JAM1 ;draw mode 
dc.w 1 ; left edge 
dc.w 1 ;top edge 
dc.l 0 ;font ptr (dflt) 
dc.l g12txt ;text pointer 
dc.l 0 ;ptr to nxt txt structure 

GLEFT set GLEFT+GWIDE+HGAP ;set next gadget rightward 

Gadget13 
dc.1 Gadget14 ;pointer to next gadget 
dc.w GLEFT ; left edge 
dc.w GTOP ;top edge 
dc.w GWIDE ;width 
dc.w GHIGH ;height 
dc.w GADGHCOMP ;flags 
dc.w RELVERIFY ;activation flags 
dc.w BOOLGADGET ;gadget type 
dc.l border1 ;ptr to border structure 
dc.l 0 
dc.l g13itxt ;ptr to text structure 
dc.l 0 
dc.l 0 
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dc.w 30 ;id 
dc.l 0 

g13itxt 
dc.b KEY COL ;front pen 
dc.b 0 ;back pen 
dc.b RP JAMl ;draw mode 
dc.w 1 ;left edge 
dc.w 1 ;top edge 
dc.l 0 ;font ptr (dflt) 
dc.l g13txt ;text pointer 
dc.l 0 ;ptr to nxt txt structure 

GLEFT set GLEFT+GWIDE+HGAP ;set next gadget rightward 

Gadget14 
dc.l Gadget15 ;pointer to next gadget 
dc.w GLEFT ;left edge 
dc.w GTOP ;top edge 
dc.w GWIDE ;width 
dc.w GHIGH ;height 
dc.w GADGHCOMP ;flags 
dc.w RELVERIFY ;activation flags 
dc.w BOOLGADGET ;gadget type 
dc.l border1 ;ptr to border structure 
dc.l 0 
dc.l g14itxt ;ptr to text structure 
dc.l 0 
dc.l 0 
dc.w 31 ;id 
dc.l 0 

g14itxt 
dc.b KEY COL ;front pen 
dc.b 0 ;back pen 
dc.b RP_JAMl ;draw mode 
dc.w 1 ; left edge. 
dc.w 1 ;top edge 
dc.l 0 ;font ptr (dflt) 
dc.l g14txt ;text pointer 
dc.l 0 ;ptr to nxt txt structure 

GLEFT set GLEFT+GWIDE+HGAP ;set next gadget rightward 

Gadget15 
dc.l Gadget16 ;pointer to next gadget 
dc.w GLEFT ; left edge 
dc.w GTOP ;top edge 
dc.w GWIDE ;width 
dc.w GHIGH ;height 
dc.w GADGHCOMP ;flags 
dc.w RELVERIFY ;activation flags 
dc.w BOOLGADGET ;gadget type 
dc.l border1 ;ptr to border structure 
dc.l 0 
dc.l glSitxt ;ptr to text structure 
dc.l 0 
dc.l 0 
dc.w 13 ;id 
dc.l 0 

178 



gl5itxt 

GTOP 
GLEFT 

Gadget16 

gl6itxt 

GLEFT 

Gadgetl7 

gl7itxt 

dc.b 
dc.b 
dc.b 
dc.w 
dc:w 
dc.l 
dc.l 
dc.l 

set 
set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc . .w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

KEY COL 
0 
RP JAMl 
1 
1 
0 
gl5txt 
0 

GTOP+GHIGH+VGAP 
GMINLEFT 

Gadgetl7 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border! 
0 
gl6itxt 
0 
0 
12 
0 

KEY COL 
0 
RP JAMl 

1 
1 
0 
gl6txt 
0 

GLEFT+GWIDE+HGAP 

Gadgetl8 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
borderl 
0 
gl7itxt 
0 
0 
26 
0 

; front pen 
;back pen 
;draw mode 
; left edge 
;top edge 
; font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget lower 
;initialize gadget left coord 

;pointer to next gadget 
; left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
; left edge 
;top edge 
; font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
; gadget type 
;ptr to border structure 

;ptr to text structure 

;id 
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GLEFT 

Gadgetl8 

gl8itxt 

GLEFT 

Gadgetl9 

g19itxt 
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dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
"dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 

KEY COL 
0 
RP JAM1 
1-
1 
0 
g17txt 
0 

GLEFT+GWIDE+HGAP 

Gadget19 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
borderl 
0 
g18itxt 
0 
0 
27 
0 

KEY COL 
0 
RP JAMl 
1-
1 
0 
gl8txt 
0 

GLEFT+GWIDE+HGAP 

Gadget20 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
borderl 
0 
gl9itxt 
0 
0 
28 
0 

KEY COL 
0 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
; font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;point to next gadget 
; left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
; gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 



GLEFT 

Gadget20 

g20itxt 

GTOP 
GLEFT 

Gadget21 

g21itxt 

dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 
set 

dc.l 
dc.w 
dc .. w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 

RP JAMl 
1-
1 
0 
g19txt 
0 

GLEFT+GWIDE+HGAP 

Gadget21 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border1 
0 
g20itxt 
0 
0 
36 
0 

I<EYCOL 
0 
RP JAM1 
1-
1 
0 
g20txt 
0 

GTOP+GHIGH+VGAP 
GMINLEFT 

Gadget22 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
borderl 
0 
g21itxt 
0 
0 
33 
0 

I<EYCOL 
0 
RP_JAMl 

;draw mode 
;left edge 
;top edge 
; font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
;flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
; font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget lower 
;initialize gadget left coord 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
;flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
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GLEFT 

Gadget22 

g22itxt 

GLEFT 

Gadget23 

g23itxt 

182 

dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 

1 
1 
0 
g21txt 
0 

GLEFT+GWIDE+HGAP 

Gadget23 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border1 
0 
g22itxt 
0 
0 
23 
0 

KEY COL 
0 
RP JAM1 
1 
1 
0 
g22txt 
0 

GLEFT+GWIDE+HGAP 

Gadget24 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border1 
0 
g23itxt 
0 
0 
24 
0 

KEY COL 
0 
RP JAM1 
1 
1 

; left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 



dc.l 0 ;font ptr (dflt) 
dc.l g23txt ;text pointer 
dc.l 0 ;ptr to nxt txt structure 

GLEFT set GLEFT+GWIDE+HGAP ;set next gadget rightward 

Gadget24 
dc.l Gadget25 ;pointer to next gadget 
dc.w GLEFT ;left edge 
dc.w GTOP ;top edge 
dc.w GWIDE ;width 
dc.w GHIGH ;height 
dc.w GADGHCOMP ;flags 
dc.w RELVERIFY ;activation flags 
dc.w BOOLGADGET ;gadget type 
dc.l borderl ;ptr to border structure 
dc.l 0 
dc.l g24itxt ;ptr to text structure 
dc.l 0 
dc.l 0 
dc.w 25 ;id 
dc.l 0 

g24itxt 
dc.b KEY COL ;front pen 
dc.b 0 ;back pen 
dc.b RP JAM1 ;draw mode 
dc.w 1 ;left edge 
dc.w 1 ;top edge 
dc.l 0 ; font ptr (dflt) 
dc.l g24txt ;text pointer 
dc.l 0 ;ptr to nxt txt structure 

GLEFT set GLEFT+GWIDE+HGAP ;set next gadget rightward 

Gadget25 
dc.l Gadget26 ;pointer to next gadget 
dc.w GLEFT ; left edge 
dc.w GTOP ;top edqe 
dc.w GWIDE ;width 
dc.w GHIGH ;height 
dc.w GADGHCOMP ; flags 
dc.w RELVERIFY ;activation flags 
dc.w BOOLGADGET ;gadget type 
dc'.l border1 ;ptr to border structure 
dc.1 0 
dc.l g25itxt ;ptr to text structure 
dc.l 0 
dc.l 0 
dc.w 37 ;id 
dc.l 0 

g25itxt 
dc.b KEY COL ;front pen 
dc.b 0 ;back pen 
dc.b RP JAM1 ;draw mode 
dc.w 1 ; left edge 
dc.w 1 ;top edge 
dc.l 0 ;font ptr (dflt) 
dc.l g25txt ;text pointer 
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GTOP 
GLEFT 

Gadget26 

g26itxt 

GLEFT 

Gadget27 

g27itxt 

184 

dc.l 

set 
set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

0 

GTOP+GHIGH+VGAP 
GMINLEFT 

Gadget27 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border1 
0 
g26itxt 
0 
0 
34 
0 

KEY COL 
0 
RP JAM1 
1 
1 
0 
g26txt 
0 

GLEFT+GWIDE+HGAP 

Gadget28 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
borderl 
0 
g27itxt 
0 
0 
20 
0 

KEY COL 
0 
RP JAM1 
1 
1 
0 
g27txt 
0 

;ptr to nxt txt structure 

;set next gadget lower 
;initialize gadget left coord 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
;flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
; font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
; left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
; left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 



GLEFT 

Gadget28 

g28itxt 

GLEFT 

Gadget29 

g29itxt 

GLEFT 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w· 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

GLEFT+GWIDE+HGAP 

Gadget29 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border1 
0 
g28itxt 
0 
0 
21 
0 

KEY COL 
0 
RP JAM1 
1-
1 
0 
g28txt 
0 

GLEFT+GWIDE+HGAP 

Gadget30 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border1 
0 
g29itxt 
0 
0 
22 
0 

KEY COL 
0 
RP JAM1 
1-

1 
0 
g29txt 
0 

GLEFT+GWIDE+HGAP 

;set next gadget rightward 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
; left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
; gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
; left edge 
;top edge 
; font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 
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Gadget30 

g30itxt 

GTOP 
GLEFT 

Gadget31 

g31itxt 

GLEFT 

Gadget32 

186 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 
set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

Gadget31 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border1 
0 
g30itxt 
0 
0 
38 
0 

KEY COL 
0 
RP JAM1 
1 ~ 

1 
0 
g30txt 
0 

GTOP+GHIGH+VGAP 
GMINLEFT 

Gadget32 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
borderl 
0 
g31itxt 
0 
0 
35 
0 

KEY COL 
0 
RP JAM1 
1 -
1 
0 
g31txt 
0 

GLEFT+GWIDE+HGAP 

;pointer to next gadget 
; left edge 
;top edge 
;width 
;height 
;flags 
;activation flags 
;gadget type 
;ptr to border·structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
; left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget lower 
;initialize gadget left coord 

;pointer to next gadget 
; left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
; font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 



g32itxt 

GLEFT 

Gadget33 

g33itxt 

GLEFT 

Gadget34 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 

Gadget33 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border! 
0 
g32itxt 
0 
0 
17 
0 

KEY COL 
0 
RP JAMl 
1 
1 
0 
g32txt 
0 

GLEFT+GWIDE+HGAP 

Gadget34 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border! 
0 
g33itxt 
0 
0 
18 
0 

KEY COL 
0 
RP JAMl 
1-
1 
0 
g33txt 
0 

GLEFT+GWIDE+HGAP 

Gadget35 
GLEFT 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
; left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
; left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
;left edge 
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g34itxt 

GLEFT 

Gadget35 

g35itxt 

GTOP 
GLEFT 

Gadget36 

188 

dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 
set 

dc.l 
dc.w 
dc.w 

GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border1 
0 
g34itxt 
0 
0 
19 
0 

KEY COL 
0 
RP JAM1 
1 
1 
0 
g34txt 
0 

GLEFT+GWIDE+HGAP 

Gadget36 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border1 
0 
g35itxt 
0 
0 
39 
0 

KEY COL 
0 
RP JAM1 
1 
1 
0 
g35txt 
0 

GTOP+GHIGH+VGAP 
GMINLEFT 

Gadget37 
GLEFT 
GTOP 

;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
; font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
; left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget lower 
;initialize gadget left coord 

;pointer to next gadget 
; left edge 
;top edge 



g36itxt 

GLEFT 

Gadget37 

g37itxt 

GLEFT 

Gadget38 

dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 

GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border! 
0 
g36itxt 
0 
0 
6 
0 

KEY COL 
0 
RP JAM1 
1 -
1 
0 
g36txt 
0 

GLEFT+GWIDE+HGAP 

Gadget38 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border1 
0 
g37itxt 
0 
0 
16 
0 

KEY COL 
0 
RP JAM1 
1 
1 
0 
g37txt 
0 

GLEFT+GWIDE+HGAP 

Gadget39 
GLEFT 
GTOP 
GWIDE 
GHIGH 

;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
; left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
; left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
; left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
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g38itxt 

GLEFT 

Gadget39 

g39itxt 

GLEFT 

Gadget40 
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dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc .. l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 
dc.l 
dc.l 
dc.w 
dc.l 

dc.b 
dc.b 
dc.b 
dc.w 
dc.w 
dc.l 
dc.l 
dc.l 

set 

dc.l 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 

GADGHCOMP 
RELVERIFY 
BOOLGADGET' 
border1 
0 
g38itxt 
0 
0 
15 
0 

KEY COL 
0 
RP JAM1 
1 
1 
0 
g38txt 
0 

GLEFT+GWIDE+HGAP 

Gadget40 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 
BOOLGADGET 
border1 
0 
g39itxt 
0 
0 
14 
0 

KEY COL 
0 
RP JAM1 
1 
1 
0 
g39txt 
0 

GLEFT+GWIDE+HGAP 

0 
GLEFT 
GTOP 
GWIDE 
GHIGH 
GADGHCOMP 
RELVERIFY 

; flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
;left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
;flags 
;activation flags 
;gadget type 
;ptr to border structure 

;ptr to text structure 

;id 

;front pen 
;back pen 
;draw mode 
; left edge 
;top edge 
;font ptr (dflt) 
;text pointer 
;ptr to nxt txt structure 

;set next gadget rightward 

;pointer to next gadget 
;left edge 
;top edge 
;width 
;height 
; flags 
;activation flags 



dc.w BOOLGADGET ;gadget type 
dc.l border1 ;ptr to border structure 
dc.l 0 
dc.l g40itxt ;ptr to text structure 
dc.l 0 
dc.l 0 
dc.w 5 ;id 
dc.l 0 

g40itxt 
dc.b KEY COL ;front pen 
dc.b 0 ;back pen 
dc.b RP_JAM1 ;draw mode 
dc;w 1 ;left edge 
dc.w 1 ;top edge 
dc.l 0 ;font ptr (dflt) 
dc.l g40txt ;text pointer 
dc.l 0 ;ptr to nxt txt structure 

g1txt dc.b 1DEC 1 ,0 
g2txt dc.b 'HEX' ,0 
g3txt dc.b 'OCT',O 
g4txt dc.b 'BIN', 0 
g5txt dc.b 'CLR',O 
g6txt dc.b 'STO',O 
g7txt dc.b 1 RCL 1 ,0 
g8txt dc.b 'SUM', 0 
g9txt dc.b I (If 0 
g10txt dc.b I ) If 0 
glltxt dc.b 'SHF', 0 
g12txt dc.b I D', 0 
g13txt dc.b I E' ,0 
g14txt dc.b I F', 0 
g15txt dc.b I K', 0 
g16txt dc.b 'NOT' ,0 
g17txt dc.b I A', 0 
g18txt dc.b I B', 0 
g19txt dc.b I C', 0 
g20txt dc.b I I', 0 
g21txt 'dc.b 'OR' ,0 
g22txt dc.b I 7 If 0 
g23txt dc.b I 8', 0 
g24txt dc.b I 9' ,0 
g25txt dc.b I *If 0 
g26txt dc.b 'AND',O 
g27txt dc.b I 4 1 r 0 
g28txt dc.b • 5', 0 
g29txt dc.b I 6', 0 
g30txt dc.b I -' f 0 
g31txt dc.b 'XOR' ,0 
g32txt dc.b I 1 If 0 
g33txt dc.b I 2 I r 0 
g34txt dc.b I 3 If 0 
g35txt dc.b I +' f 0 
g36txt dc.b 'CE' ,0 
g37txt dc.b I 0 ', 0 
g38txt dc.b I • If 0 
g39txt dc.b '+/-',0 
g40txt dc.b I =' f 0 
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numstr 
errstr 
dispstr 

wtitle 

INT Lib 
DOS-Lib 

msg 
msglen 

end 
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dcb.b 
dc.b 
dcb.b 
dc.b 

dc.b 

dc.b 
dc.b 

dc.b 
equ 

9,0 
Error 

18,0 
0 

'Programmer Calc',O 

'intuition.library',O 
'dos.library',O 

;space for numeric string 
;string to display error 
;space for displayed string 
;terminal null for string 

'This program must be run from the Workbench.',$0a 
*-msg 



Appendix: 

The Library Routines 

What follows is a list of the library routines available to Amiga software developers. 
Each routine is listed along with the library that contains it. Except for the exec li
brary, all libraries must be opened before their routines are available to a program
mer. For the purposes of clarity, the _LVO prefix has been omitted, but should be 
affixed when you are using these routines from assembly language code. 

Below each routine's name is a list of mnemonics showing the parameters required 
(if any) for its operation. These mnemonics serve only to provide a reminder of what 
each parameter actually represents. Next to each mnemonic is the register that should 
be used to send it to the routine. 

AbortiO 
ioRequest 
al 

AddAnimOb 
obj,animationKey ,rastPort 
aO al a2 

AddBob 
bob,rastPort 
aO al 

exec .library 

graphics .library 

graphics .library 
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AddDevice exec .library 
device 
al 

AddFont graphics.library 
textFont 
al 

AddFreeList icon .library 
freelist,mem,size 
aO al a2 

Add Gadget intuition .library 
AddPtr,Gadget,Position 
aO al dO 

AddHead exec.library 
list,node 
aO al 

AddlntServer exec .library 
intNumber,interrupt 
dO al 

AddLibrary exec.library 

library 
al 

AddPort exec .library 
port 
al 

AddResource exec .library 
resource 
al 

Add Tail exec .library 
list,node 
aO al 

Add Task exec .library 

task,initPC,finalPC 
al a2 a3 

Add Time timer.device 
dest,src 
aO al 
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AddVSprite 
vSprite,rastPort 
aO al 

Alert 
alertNum,parameters 
d7 a5 

AllocAbs 
byteSize,location 
dO al 

AllocCList 
cLPool 
al 

AllocEntry 
entry 
aO 

AllocMem 
byteSize,requirements 
dO dl 

AllocRaster 
width, height 
dO dl 

AllocRemember 
RememberKey,Size,Flags 
aO dO dl 

AllocSignal 
signalNum 
dO 

AllocTrap 
trapNum 
dO 

AllocVVlJ()bject 
No Parameters 

Allocate 
freeList, byteSize 
aO dO 

graphics.library 

exec.library 

exec .library 

clist.library 

exec .library 

exec .library 

graphics.library 

intuition.library 

exec .library 

exec.library 

icon .library 

exec.library 
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Aloha Workbench 
wbport 
aO 

AndRectRegion 
rgn,rect 
aO al 

Animate 
animationKey ,rastPort 
aO al 

AreaDraw 
rastPort,x, y 
al dO dl 

AreaEnd 
rastPort 
al 

AreaMove 
rastPort,x, y 
al dO dl 

AskFont 
rastPort, textAttr 
al aO 

AskSoftStyle 
rastPort 
al 

intuition.library 

graphics .library 

graphics.library 

graphics .library 

graphics .library 

graphics .library 

graphics .library 

graphics .library 

AutoRequest intuition.library 
Window,Body,PText,NText,PFlag,NFlag,W, H 
aO al a2 a3 dO dl d2 d3 

AvailFonts 
buffer, bufBytes,flags 
aO dO dl 

AvailMem 
requirements 
dl 

BeginRefresh 
Window 
aO 
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diskfont.library 

exec .library 

intuition .library 



Begin Update 
layer 
aO 

BehindLayer 
li, layer 
aO al 

layers .library 

layers .library 

BltBitMap graphics.library 
srcBitMap,srcX,srcY,destBitMap,destX,destY,sizeX,sizeY,minterm,mask,tempA 
aO dO dl al d2 d3 d4 d5 d6 d7 a2 

BltBitMapRastPort graphics.library 
srcbm,srcx,srcy ,destrp,destX,dest Y ,sizeX,size Y ,min term 
aO dO dl al d2 d3 d4 d5 d6 

BltClear graphics.library 
memory ,size,flags 
al dO dl 

BltPattern graphics.library 
rastPort,ras,xl, yl, maxX,max Y ,fillBytes 
al aO dO dl d2 d3 d4 

BltTemplate graphics.library 
source,srcX,srcMod,destRastPort,destX,dest Y ,sizeX,size Y 
aO dO dl al d2 d3 d4 d5 

BuildSysRequest intuition.library 
Window,Body,PosText,NegText,Flags,W, H 
aO al a2 a3 dO dl d2 

BumpRevision 
newname,oldname 
aO al 

CBump 
copper List 
al 

CMove 
copperList,destination,data 
al dO dl 

CWait 
copperList,x, y 
al dO dl 

icon .library 

graphics.library 

graphics .library 

graphics .library 
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--------------------------------------···-

Cause 
interrupt 
al 

ChangeSprite 
vp,simplesprite,data 
aOal a2 

CheckiO 
ioRequest 
al 

ClearDMRequest 
Window 
aO 

ClearEOL 
rastPort 
al 

ClearMenuStrip 
Window 
aO 

Clear Pointer 
Window 
aO 

Clear Region 
rgn 
aO 

ClearScreen 
rastPort 
al 

exec.library 

graphics.library 

exec .library 

intuition.library 

graphics.library 

intuition.library 

intuition. library 

graphics.library 

graphics .library 

ClipBlit graphics.library 
srcrp,srcX,src Y ,destrp,destX,dest Y,sizeX,size Y,minterm 
aO dO dl al d2 d3 d4 d5 d6 

Close 
file 
dl 
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CloseDevice 
ioRequest 
al 

CloseFont 
textFont 
al 

CloseLibrary 
library 
al 

CloseScreen 
Screen 
aO 

Close Window 
Window 
aO 

CloseWorkJJench 
No Parameters 

CmpTirne 
dest,src 
aO al 

ConcatCList 
sourceCList,destCList 
aO al 

CopyCList 
cList 
aO 

CopySBitMap 
11, 12 
aO al 

CreateBehindLayer 
li, bm, xO, yO, xl, yl, flags,bm2 
aO al dO dl d2 d3 d4 a2 

CreateDir 
name 
dl 

exec .library 

graphics.library 

exec.library 

intuition.library 

intuition.library 

intuition .library 

timer .device 

clist.library 

clist.library 

graphics .library 

layers .library 

dos.library 
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CreateProc 
name,pri,segList,stackSize 
dl d2 d3 d4 

CreateUpfrontLayer 
li, bm, xO, yO, xl, yl, flags,bm2 
aO al dO dl d2 d3 d4 a2 

CurrentDir 
lock 
dl 

CurrentTime 
Seconds,Micros 
aO al 

DateStamp 
date 
dl 

Deallocate 
freeList,memoryBlock,byteSize 
aO al dO 

Debug 
No Parameters 

Delay 
timeout 
dl 

DeleteFile 
name 
dl 

DeleteLayer 
li, layer 
aO al 

DeviceProc 
name 
dl 

Disable 
No Parameters 
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dos.library 

layers. library 

dos.library 

intuition .library 

dos.library 

exec .library 

exec.library 

dos.library 

dos.library 

layers.library 

dos.library 

exec.library 



DisownBlitter 
No Parameters 

Display Alert 
AlertNumber,String,Height 
dO aO dl 

Display Beep 
Screen 
aO 

DisposeLayerlnfo 
li 
aO 

DisposeRegion 
rgn 
aO 

DoCollision 
rasPort 
al 

DolO 
ioRequest 
al 

DoubleClick 
sseconds,smicros,cseconds,cmicros 
dO dl d2 d3 

Draw 
rastPort,x, y 
al dO dl 

Draw Border 
RPort,Border,LeftOffset, TopOffset 
aO al dO dl 

DrawGList 
rastPort,viewPort 
al aO 

Draw Image 
RPort,lmage,LeftOffset, TopOffset 
aO al dO dl 

graphics .library 

intuition .library 

intuition .library 

layers .library 

graphics. library 

graphics.library 

exec. library 

intuition.library 

graphics .library 

intuition. library 

graphics .library 

intuition.library 
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DupLock dos.library 
lock 
dl 

Enable exec .library 
No Parameters 

EndRefresh intuition.library 
Window ,Complete 
aO dO 

EndRequest intuition.library 
requester ,window 
aO al 

End Update · layers.library 
layer,flag 
aO dO 

Enqueue exec .library 

list,node 
aO al 

ExNext dos.library 
lock,filelnfoBlock 
dl d2 

Examine dos.library 
lock,filelnfoBlock 
dl d2 

Execute dos.library 
string,file,file 
dl d2 d3 

Exit dos.library 
return Code 
dl 

FattenLayerlnfo layers .library 

1i 
aO 

FindName exec .library 
list, name 
aO al 
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FindPort 
name 
al 

FindResident 
name 
al 

Find Task 
name 
al 

FindToolType 
toolTypeArray,typeName 
aO al 

Flood 
rastPort,mode,x, y 
al d2 dO dl 

FlushCList 
cList 
aO 

Forbid 
No Parameters 

FreeCList 
cList 
aO 

FreeColorMap 
colormap 
aO 

FreeCopList 
cop list 
aO 

FreeCprList 
cprlist 
aO 

FreeDiskObject 
diskobj 
aO 

exec.library 

exec .library 

exec .library 

icon .library 

graphics .library 

clist.library 

exec.library 

clist.library 

graphics .library 

graphics .library 

graphics .library 

icon .library 
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FreeEntry 
entry 
aO 

FreeFreeList 
freelist 
aO 

FreeGBuffers 
animationObj ,rastPort,doubleBuffer 
aO al dO 

FreeMem 
memoryBlock,byteSize 
al dO 

FreeRaster 
planeptr,width,height 
aO dO dl 

FreeRemember 
RememberKey,ReallyForget 
aO dO 

FreeSignal 
signalNum 
dO 

Free Sprite 
num 
dO 

FreeSysRequest 
Window 
aO 

Free Trap 
trapNum 
dO 

FreeVPortCopLists 
viewport 
aO 
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exec.library 

icon.library 

graphics.library 

exec .library 

graphics.library 

intuition.library 

exec .library 

graphics.library 

intuition.library 

exec .library 

graphics .library 



FreeWBObject 
WBObject 
aO 

GetCC 
No Parameters 

GetCLBuf 
cList,buffer ,maxLength 
aO al dl 

GetCLChar 
cList 
aO 

GetCLWord 
cList 
aO 

GetColorMap 
entries 
dO 

GetDefPrefs 
preferences,size 
aO dO 

GetDiskObject 
name 
aO 

GetGBuffers 
animationObj ,rastPort,doubleBuffer 
aO al dO 

Getlcon 
name,icon,freelist 
aO al a2 

GetMsg 
port 
aO 

GetPrefs 
preferences,size 
aO dO 

icon .library 

exec.library 

clist.library 

clist.library 

clist.library 

graphics .library 

intuition.library 

icon .library 

graphics .library 

icon .library 

exec.library 

intuition .library 
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GetRGB4 
colormap,entry 
aO dO 

Get Sprite 
simplesprite,num 
aO dO 

GetWBObject 
name 
aO 

IEEEDPAbs 
integer,integer 
dO dl 

IEEEDPAdd 
integer,integer,integer,integer 
dO dl d2 d3 

IEEEDPCmp 
integer, integer, integer, integer 
dO dl d2 d3 

IEEEDPDiv 
integer ,integer ,integer ,integer 
dO dl d2 d3 

IEEEDPFix 
integer ,integer 
dO dl 

IEEEDPFlt 
integer 
dO 

IEEEDPMul 
integer,integer,integer,integer 
dO dl d2 d3 

IEEEDPNeg 
integer,integer 
dO dl 

IEEEDPSub 
integer ,integer ,integer, integer 
dO dl d2 d3 
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graphics .library 

graphics .library 

icon.library 

mathieeedoubbas.library 

mathieeedoubbas.library 

mathieeedoubbas.library 

mathieeedoubbas.library 

mathieeedoubbas.library 

mathieeedoubbas.library 

mathieeedoubbas.library 

mathieeedoubbas.library 

mathieeedoubbas.library 



IEEEDPTst 
integer,integer 
dO dl 

IncrCLMark 
cList 
aO 

Info 
lock, parameter Block 
dl d2 

InitArea 
arealnfo, vectorTable, vectorTableSize 
aO al dO 

InitBitMap 
bitMap,depth,width,height 
aO dO dl d2 

InitCLPool 
cLPool,size 
aO dO 

InitCode 
startClass, version 
dO dl 

InitGMasks 
animationObj 
aO 

lnitGels 
dummyHead,dummyTail,Gelslnfo 
aO al a2 

InitLayers 
li 
aO 

InitMasks 
vSprite 
aO 

InitRastPort 
rastPort 
al 

mathieeedoubbas.library 

clist.library 

dos.library 

graphics.library 

graphics.library 

clist.library 

exec.library 

graphics .library 

graphics.library 

layers.library 

graphics .library 

graphics .library 
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InitRequester intuition.library 
req 
aO 

InitResident exec .library 
resident,segList 
al dl 

InitStruct exec .library 
initTable,memory,size 
al a2 dO 

InitTmpRas graphics .library 
tmpras,buff,size 
aO al dO 

lnitVPort graphics.library 
viewPort 
aO 

InitView graphics.library 
view 
al 

Input dos.library 
No Parameters 

Insert exec .library 
list,node,pred 
aO al a2 

IntuiTextLength intuition.library 
itext 
aO 

Intuition intuition.library 
ievent 
aO 

IoErr dos.library 
No Parameters 

Islnteractive dos.library 
file 
dl 
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ltemAddress 
MenuStrip,MenuNumber 
aO dO 

LoadRGB4 
view Port,colors,count 
aO al dO 

LoadSeg 
fileName 
dl 

Load View 
view 
al 

Lock 
name,type 
dl d2 

LockiBase 
dontknow 
dO 

LockLayer 
li, layer 
aO al 

LockLayerlnfo 
li 
aO 

LockLayerRom 
layer 
a5 

LockLayers 
li 
aO 

MakeFunctions 
target,functionArray ,funcDispBase 
aO al a2 

intuition .library 

graphics .library 

dos.library 

graphics .library 

dos.library 

intuition .library 

layers .library 

layers .library 

graphics .library 

layers .library 

exec .library 
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MakeLibrary exec.library 
funclnit,structlnit,liblnit,dataSize,codeSize 
aO al a2 dO dl 

Make Screen 
Screen 
aO 

MakeVPort 
view,viewPort 
aO al 

MarkCList 
cList,offset 
aO dO 

MatchToolValue 
type String, value 
aO al 

ModifyiDCMP 
Window,Flags 
aO dO 

intuition.library 

graphics .library 

clist.library 

icon.library 

intuition .library 

ModifyProp intuition.library 
Gadget,Ptr,Req,Flags,HPos,VPos,HBody,VBody 
aO al a2 dO dl d2 d3 d4 

Move 
rastPort,x, y 
al dO dl 

MoveLayer 
li, layer,dx, dy 
aO al dO dl 

graphics .library 

layers.library 

MoveLayerlnFrontOf layers.library 
layer_to_move,layer_to_be_infront_of 
aO al 

MoveScreen 
Screen,dx, dy 
aO dO dl 
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MoveSprite graphics .library 
viewport,simplesprite,x, y 
aO al dO dl 

Move Window intuition.library 
window,dx,dy 
aO dO dl 

MrgCop graphics .library 
view 
al 

NewLayerlnfo layers .library 
No Parameters 

New Region graphics.library 
No Parameters 

NotRegion graphics.library 
rgn 
aO 

OffGadget intuition.library 
Gadget,Ptr ,Req 
aO al a2 

OffMenu intuition.library 
Window,MenuNumber 
aO dO 

OldOpenLibrary exec.library 
libName 
al 

On Gadget intuition .library 
Gadget,Ptr ,Req 
aO al a2 

OnMenu intuition.library 
Window,MenuNumber 
aO dO 

Open dos.library 
name,accessMode 
dl d2 
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OpenDevice 
devName,unit,ioRequest,flags 
aO dO al dl 

OpenDiskFont 
textAttr 
aO 

OpenFont 
textAttr 
aO 

Openlntuition 
No Parameters 

OpenLibrary 
libName,version 
al dO 

OpenResource 
resName,version 
al dO 

Open Screen 
OSargs 
aO 

Open Window 
OWargs 
aO 

Open WorkBench 
No Parameters 

OrRectRegion 
rgn,rect 
aO al 

Output 
No Parameters 

OwnBlitter 
No Parameters 
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exec .library 

diskfont.library 

graphics .library 

intuition.library 

exec .library 

exec .library 

intuition.library 

intuition.library 

intuition .library 

graphics .library 

dos.library 

graphics.library 



ParentDir 
lock 
dl 

PeekCLMark 
cList 
aO 

Permit 
No Parameters 

PointerColors 
Screen,Red,Gren,Blue 
aO dO dl d2 

Poly Draw 
rastPort,count,polyTable 
al dO aO 

PrintiText 
rp, itext,left,top 
aO al dO dl 

Procure 
semaport,bidMsg 
aO al 

PutCLBuf 
cList, buffer ,length 
aO al dl 

PutCLChar 
cList,byte 
aO dO 

PutCLWord 
cList,word 
aO dO 

PutDiskObject 
name,diskobj 
aO al 

Putlcon 
name,icon 
aO al 

dos.library 

clist.library 

exec .library 

intuition.library 

graphics.Iibrary 

intuition.Iibrary 

exec .library 

clist.library 

clist.library 

clist.library 

icon .library 

icon.library 
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PutMsg 
port,message 
aO al 

PutWBObject 
name, object 
aO al 

QBSBlit 
blit 
al 

QBlit 
blit 
al 

Read 
file, buffer,length 
dl d2 d3 

ReadPix.el 
rastPort,x, y 
al dO dl 

RectFill 
rastPort,xl, yl, xu, yu 
al dO dl d2 d3 

Refresh Gadgets 
Gadgets,Ptr,Req 
aO al a2 

Rem.Device 
device 
al 

Rem.Font 
textFont 
al 

RemHead 
list 
aO 

RemiBob 
bob,rastPort, viewPort 
aO al a2 
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exec.library 

icon .library 

graphics .library 

graphics.library 

dos.library 

graphics .library 

graphics.library 

intuition.library 

exec.library 

graphics.library 

exec .library 

graphics .library 



RemlntServer exec.library 
intNumber,interrupt 
dO al 

RemLibrary exec.library 
library 
al 

RemPort exec.library 
port 
al 

RemResource exec.library 
resource 
al 

Rem Tail exec.library 
list 
aO 

Rem Task exec.library 
task 
al 

RemVSprite graphics .library 
vSprite 
aO 

RemakeDisplay intuition.library 
No Parameters 

Remove exec.library 
node 
al 

RemoveGadget intuition.library 
RemPtr,Gadget 
aO al 

Rename dos.library 
oldName,newName 
dl d2 

ReplyMsg exec .library 
message 
al 
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ReportMouse intuition.library 
Window,Boolean 
aO dO 

Request intuition .library 
Requester, Window 
aO al 

RethinkDisplay intuition.library 
No Parameters 

SPAbs mathffp.library 
float 
dO 

SPAcos math trans .library 
float 
dO 

SPAdd mathffp .library 
leftFloat,rightFloat 
dl dO 

SPAsin mathtrans.library 
float 
dO 

SPAtan mathtrans.library 
float 
dO 

SPCmp mathffp.library 
leftFloat,rightFloat 
dl dO 

SPCos mathtrans.library 
float 
dO 

SPCosh mathtrans.library 
float 
dO 

SPDiv mathffp.library 
leftFloat,rightFloat 
dl dO 
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SPExp mathtrans.library 
float 
dO 

SPFieee mathtrans.library 
integer 
dO 

SPFix mathffp.library 
float 
dO 

SPFlt mathffp.library 
integer 
dO 

SPLog math trans .library 
float 
dO 

SPLoglO math trans .library 
float 
dO 

SPMul mathffp.library 
leftFloat,rightFloat 
dl dO 

SPNeg mathffp.library 
float 
dO 

SPPow mathtrans.library 
leftFloat,rightFloat 
dl dO 

SPSin mathtrans.library 
float 
dO 

SPSincos mathtrans.library 

leftFloat,rightFloat 
dl dO 
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SPSinh 
float 
dO 

SPSqrt 
float 
dO 

SPSub 
leftFloat,rightFloat 
dl dO 

SPTan 
float 
dO 

SPTanh 
float 
dO 

SPTieee 
float 
dO 

SPTst 
float 
dl 

Screen ToBack 
Screen 
aO 

ScreenToFront 
Screen 
aO 

ScrollLayer 
li, layer,dx, dy 
aO al dO dl 

ScrollRaster 
rastPort,dX,dY ,minx,miny ,maxx,maxy 
al dO dl d2 d3 d4 d5 
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mathtrans.library 

mathtrans.library 

mathffp.library 

mathtrans.library 

math trans .library 

mathtrans.library 

Mathffp.library 

intuition .library 

intuition.library 

layers.library 

graphics .library 



ScrollVPort 
vp 
aO 

Seek 
file,position,offset 
dl d2 d3 

SendiO 
ioRequest 
al 

SetAPen 
rastPort,pen 
al dO 

SetBPen 
rastPort,pen 
al dO 

SetCollision 
type ,routine ,gels Info 
dO aO al 

SetComment 
name,comment 
dl d2 

SetDMRequest 
Window,req 
aO al 

SetDrMd 
rastPort,drawMode 
al dO 

SetExcept 
newSignals,signalSet 
dO dl 

SetFont 
rastPortiD,textFont 
al aO 

graphics .library 

dos.library 

exec .library 

graphics .library 

graphics.library 

graphics .library 

dos.library 

intuition .library 

graphics.library 

exec .library 

graphics .library 
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SetFunction 
library,funcOffset,funcEntry 
al aO dO 

SetlntVector 
intNumber,interrupt 
dO al 

SetMenuStrip 
Window,Menu 
aO al 

exec.library 

exec.library 

intuition .library 

SetPointer intuition.library 
Window,Pointer ,Height, Width,Xoffset,Yoffset 
aO al dO dl d2 d3 

SetPrefs 
preferences,size,flag 
aO dO dl 

SetProtection 
name,mask 
dl d2 

SetRGB4 
viewPort,index,r, g, b 
aO dO dl d2 d3 

SetRast 
rastPort,color 
al dO 

SetSR 
newSR,mask 
dO dl 

SetSignal 
newSignals,signalSet 
dO dl 

SetSoftStyle 
rastPort,style,enable 
al dO dl 
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intuition.library 

dos.library 

graphics.library 

graphics.library 

exec.library 

exec .library 

graphics.library 



SetTaskPri 
task, priority 
al dO 

SetWindowTitles 
window, windowtitle,screentitle 
aO al a2 

ShowTitle 
Screen, Show It 
aO dO 

Signal 
task,signalSet 
al dO 

SizeCList 
cList 
aO 

SizeLayer 
li, layer,dx, dy 
aO al dO dl 

Size Window 
window,dx, dy 
aO dO dl 

SortGList 
rastPort 
al 

SplitCList 
cList 
aO 

SubCList 
cList,index,length 
aO dO dl 

Sub Time 
dest,src 
aO al 

exec.library 

intuition. library 

intuition .library 

exec.library 

clist.library 

layers .library 

intuition .library 

graphics .library 

clist.library 

clist.library 

timer.device 
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SumLibrary 
library 
al 

SuperState 
No Parameters 

SwapBitsRastPort
ClipRect 

rp, cr 
aO al 

SyncSBitMap 
I 
aO 

Text 
RastPort,string,count 
al aO dO 

TextLength 
RastPort,string,count 
al aO dO 

ThinLayerlnfo 
li 
aO 

exec .library 

exec .library 

layers .library 

graphics .library 

graphics.library 

graphics .library 

layers .library 

Translate translator .library 

inputString,inputLength,outputBuffer, bufferSize 
aO dO al dl 

TypeOfMem 
address 
al 

UCopperListlnit 
copperlist,num 
aO dO 

UnGetCLChar 
cList,byte 
aO dO 
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exec .library 

graphics .library 

clist.library 



UnGetCLWord clist.library 
cList,word 
aO dO 

UnLoadSeg dos.library 
segment 
dl 

Unlock dos.library 
lock 
dl 

UnPutCLChar clist.library 
cList 
aO 

UnPutCLWord clist.library 
cList 
aO 

UnlockiBase intuition.library 
!BLock 
aO 

UnlockLayer layers .library 
layer 
aO 

UnlockLayerlnfo layers .library 
li 
aO 

UnlockLayerRom graphics .library 
layer 
a5 

UnlockLayers layers .library 
li 
aO 

UpfrontLayer layers .library 
li, layer 
aO al 
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UserS tate exec .library 

sysStack 
dO 

VBeamPos graphics .library 

No Parameters 

Vacate exec .library 

semaport 
aO 

View Address intuition.library 

No Parameters 

ViewPortAddress intuition.library 

window 
aO 

WBenchToBack intuition.library 

No Parameters 

WBenchToFront intuition.library 

No Parameters 

Wait exec .library 
signal Set 
dO 

WaitBOVP graphics .library 
viewport 
aO 

WaitBlit graphics .library 
No Parameters 

WaitForChar dos.library 

file, timeout 
dl d2 

WaitiO exec .library 

ioRequest 
al 
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WaitPort 
port 
aO 

WaitTOF 
No Parameters 

WhichLayer 
li, X, y 
aO dO dl 

exec .library 

graphics .library 

layers .library 

WindowLimits intuition.library 
window,minwidth,minheight,maxwidth,maxheight 
aO dO dl d2 d3 

WindowToBack 
window 
aO 

WindowToFront 
window 
aO 

Write 
file, buffer ,length 
dl d2 d3 

WritePixel 
rastPort,x, y 
al dO dl 

XorRectRegion 
rgn,rect 
aO al 

intuition .library 

intuition .library 

dos.library 

graphics .library 

graphics .library 
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Glossary 

address bus-The bits output by the processor that specify to memory the precise 
memory location that is currently being addressed. 

algorithm-The method used by a routine to perform a computation. 
assembler-A program that reads source code comprised of a list of mnemonics and 

symbolic addresses and outputs a binary version of it. This binary version may be 
directly executable or may have to be linked with other programs before execution. 
Some assemblers directly output executable code; others produce code that becomes 
executable only after being processed by a linker. 

assembler directive-An opcode that is used within the source code program that, 
instead of producing an executable instruction for use by the processor, causes the 
assembler itself to perform some task. 

assembly language-The text input to an assembler, consisting of opcode mnemonics 
and operands in the form of numbers or symbolic textual labels. 

A-trap-An exception on the 68000 that begins with the bits 1010 (or hexadecimal 
A). This causes the processor to execute the un£mplemented £nstrnction exception 
vector number 10 at hexadecimal address 28. 

BCD-Binary·coded decimal: a method whereby each four bits of a register or mem
ory location are used to contain the digits 0 through 9 only. 

binary point-The binary equivalent of a decimal point. For instance, 2.5 in decimal 
is the same as 10.1 in binary: the first contains a decimal point; the second, a binary 
point. 

bit-A binary digit: 0 or 1. 
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byte-Eight bits; one quarter of a 68000 register; the number of bits required to hold 
one character. 

data bus-The set of bits used by the processor to either send data to or read from 
memory. 

double precision-A floating-point number stored with seven bytes for the mantissa 
and one byte for the exponent. 

exception-An event that causes the 68000 processor to stop its current program ex
ecution and jump to an address in the exception table in low memory between 0 
and 3FF. 

exponent-The part of a floating-point number that locates the binary point. 
extended precision-A floating-point number stored with nine bytes for the man

tissa and one byte for the exponent. 

FIFO-First-in, first-out: a method of storing numbers in a list such that the first number 
put in is the first taken from the list. 

floating-point-A method of storing numbers whereby the number part and the lo
cation of its binary or decimal point are stored separately. 

F-trap-An exception on the 68000 that begins with the bits 1111 (or hexadecimal 
F). This causes the processor to execute the unimplemented instruction exception 
vector number 11 at hexadecimal address 2C. 

GIGO-Garbage-in, garbage-out: Not as frivolous as it sounds, this cynical little ax
iom is true of any program written by any person running on any computer anywhere. 

heap-An area of memory used to store programs and/or data usually on a more per
manent basis than a stack. In contrast with a stack, a heap grows upwards in memory. 

hexadecimal-A numbering system that counts to the base 16 and uses the digits 
0 through 9 and A through F. 

1/0-Input/Output. 
instruction-A set of bits that causes the 68000 to perform a particular operation. 
interrupt-A condition that is detected by a processor, causing it to temporarily stop 

execution after its current instruction and jump to a special interrupt routine. 

LIFO-Last-in, first-out (Like a stack.): a method of storing numbers in a list such 
that the last number stored is the first number retrieved. 

linker-A program that takes special linkable output from an assembler to produce 
an executable binary version. 

list-A connected set of memory structures used to provide a simple way to access 
each individual structure. 

long word-32 bits: the whole of a 68000 register, twice the length of a word, and 
four times the length of a byte. As an unsigned quantity, it can hold quantities be
tween 0 and 4,294,967,295. 

227 



machine code-The pure binary numbers used to drive the processor. 
mantissa-The part of a floating-point number that stores the actual digits used in 

that number. 
mnemonic-A short (usually three or four-letter) abbreviation for an opcode. 

node-A structure used to denote and identify a member of a list. 
NOP-No operation: a special instruction known to the processor; NOP causes it to 

do nothing (i.e., skip the NOP instruction). Used mainly in debugging to provide 
areas that can be patched with other opcodes. 

object code-The output from a program such as an assembler or compiler. The ob
ject code may be directly executable or may itself become the source code for an
other program during the generation of an executable program. 

octal-A numbering system that counts to the base 8 using the digits zero through 
seven. 

opcode-Short for operation code, opcode refers to a mnemonic that an assembler 
understands and translates into a machine-code numeric instruction. 

operating system-A low-level set of input/output routines in software; these are 
merged together to provide a working interface to the hardware. The Amiga pro
vides calls into the operating system to enable use of these I/0 routines. 

processor-The central piece of hardware on a computer, the processor follows in
structions written in machine code and thereby performs useful work. 

pseudo-op-See assembler directive. 

queue-A list that is maintained in a definite order. 

RIW-Read!Write. 
RAM-Random-access memory: used to hold data that is only used while power is 

applied to the computer. 
ROM-Read-only memory. ROM on the Amiga is actually a write-protected area of 

RAM from address FSOOOOOO to FFFFFFFF. This is written to once only from the 
kickstart disk at power up and contains the executive and operating system. 

register-A set of predefined bits in the processor used to store and manipulate num
bers. A register behaves like a RAM location internal to the processor. 

routine-A set of instructions in a program that performs a task separate from other 
routines. 

significand-See mantissa. 
single precision-A floating-point number stored with three bytes for the mantissa 

(or significand), and one byte for the exponent. 
stack-An area of memory used to temporarily save data in a form whereby the last 

number saved becomes the first one retrieved. Stacks increase in size from high 
towards low memory as they are filled. 

structure-An area of data consisting of individual data elements kept in a known 
format. 
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subroutine-A routine that performs a stand-alone function and usually ends with 
an opcode, such as rts, that returns to the part of the program that called it. 

trap-A 68000 operation whereby an exception that makes the 68000 jump to an ad
dress stored in a table in low memory is caused. 

word-16 bits; half of a 68000 register. As an unsigned quantity, it can hold quanti
ties between 0 and 65,535. 
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A-traps, 20 
accumulator, 5 

A 

add binary coded decimal (ABCD), 
35 

ADD instructions, 36, 37 
address bus, 24 
address register, 17 
addressing modes, 29-34 
address strobe, 25 
addresses, 4 
ADDX add extended instruction, 37 
algorithm, 4 
Amiga 6800 development system, 

91-100 
Amiga system, 68-78 

libraries for, 74 
mathematical routines on, 147 
object definitions, 76 
process and tasks of, 69 
software interface for, 76 

AmigaDOS, 72 
AND instructions, 38 
ASL arithmetic shift left instruction, 

38 
ASR arithmetic shift right instruction, 

39 
assembler directive, 10 
assembler, 5, 6, 93, 96 
assembly language, 1, 6 
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Index 

alternatives to, 11 0-113 

B 
BCHG instruction, 41 
BCLR instruction, 41 
binary numbers, 3, 130 

calculations with, 143 
negative quantities in, 137 
shorthand representation of, 133 

binary-coded decimal, 136 
bottom-up programming, 105 
BRA branch always instruction, 5, 

39 
BSR instruction, 42 
BSET instruction, 41 
BSR branch to subroutine instruc-

tion, 40 
BTST instruction, 41 
bus error input, 25 
bus grant and request, 25 

c 
calculator program, 148-192 
CHK check against bounds instruc-

tion, 41 
CLI environment, n 
CLK clock, 25 
CLR clear destination to zero in

struction, 43 
CMP compare instructions, 43, 44 

coding discipline, 105, 106 
command line interface, 72 
computer languages, 2 
condition flags, 5 

D 
data bus, 24 
data register, 17 
data transfer acknowledge, 25 
DBcc decrement and branch condi-

tionally instruction, 45 
DBRA decrement and branch in-

struction, 44 
debugging, 97, 107 
design, 103 
displacement, 31 
divide instructions, 48 
documentation, 108 
drawers, n 

E 
editor-assemblers, 6, 7, 92 
enable, 25 
EOR logical exclusive OR instruc-

tions, 46, 47 
equates, 83 
executive, 69, 71 
EXG exchange registers instruction, 

47 
exponent, 141 



EXT extend sign instruction, 47 
extended commands, 93 

F 
FIFO (first-in first-out) stack, 149 
fixed point vs. floating point, 139 
fixed-field format, 9 
flowchart, 103 
function code outputs, 25 

G 
Gadget Box Program example, 

117-128 

H 
HALT,25 
hexadecimal numbers, 133, 135 

I 
Immediate number, 9 
include files, 85, 99 
instruction set, 4, 27 
interrupt auto-vectors, 19 
interrupt inputs, 25 
interrupt mask, 18 
Intuition, 74, 82, 83 

J 
JMP jump instruction, 5, 47, 48 
JSR jump to subroutine instruction, 

48 

L 
LEA load effect address instruction, 

49 
library call, 86 
library offset table, 74 
library routines, 75, 89, 193-225 
LINK subroutine instruction, 49, 50 
linker, 76, 95 
load effective address, 49 
local labels, 94 
location, 4 
logical functions, 146 
logical NOT, 58 
logical OR, 58 
lower data strobe, 25 
LSL logical shift left instruction, 51 
LSR logical shift right instruction, 51 

M 
machine language, 6 
machine-code programming, 1 
macros, 80, 82 
maintenance, 1 09 

Edited by Marianne Klema 

mantissa, 141 
mask, 18 
memory, 14, 15, 19-23 
module hierarchy, 72, 73 
Motorola MC68000 microprocessor 

addressing modes for, 26-34 
instruction set for, 27, 35 
pinout of, 24 
profile of, 14-25 
registers for, 16 

MOVE instructions, 26, 52-55 
MUL multiplication instructions, 56 
multitasking, 71 

N 
NBCD negate binary coded decimal 

instruction, 56 
NEG negate instructions, 57 
new window, 71, 80 
node, 72 
NOP no operation instruction, 57 
normalization, 142 
NOT logical NOT instruction, 56 
number-crunching, 129 

0 
object code, 7 
octal numbers, 130, 133 
offset, 79 
one's and two's complement, 56, 

138 
opcode,4 
OR logical OR instructions, 58 

p 
PEA push effective address instruc-

tion, 59 
precision, 141 
privileged state, 18 
program counter, 5 
program design process, 101-109 
pseudo-ops, 10 
pseudo-ROM, 71 

queue, 72 

RAM map, 70 
read/write, 25 

Q 

R 

register addressing, 9 
register conventions, 88 
registers, 5, 16, 17 
RESET instruction, 25, 59 

ROL rotate left instructions, 60 
ROR rotate right instructions, 61 
ATE return instructions, 62 

s 
SBCD subtract binary coded deci

mal instruction, 62 
Sec set from condition codes in-

struction, 63 
software interface, structures in, 79 
source codes, 7 
specification, 102 
status register, 18 
STOP instruction, 63 
store, 149 
structured programming, 104 
structures, 79 
stub, 106 
SUB subtraction instructions, 64, 65 
subroutine, 4 
supervisor, 18 
SWAP data register halves instruc

tion, 65 
symbol table, 108 
system stack pointer, 17 

T 
TAS test and set instruction, 66 
testing, 106 
Text Program example, 114-117 
time-slice, 71 
top-down programming, 105 
toroids, 14 
tracing, 18, 108 
TRAP software instruction, 86 
trap vectors, 19 
TRAPV if overflow instruction, 67 
TST test operand instruction, 67 

u 
UNLK unlink instruction, 67 
upper data strobe, 25 
user byte, 18 
user stack pointer, 17 
utilities, 98 

v 
valid addresses, 25 
Von Neuman system, 103 

weight, 134 
windows, 80 

w 

workbench environment, 77 
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Other Bestsellers From TAB 

0 C PROGRAMMING-WITH BUSINESS 
APPLICATIONS-Or. Leon A. Wortman and Thomas 0. 
Sidebottom 

This learn-by-doing guide puts its emphasis on actual 
programs that demonstrate the ways C code is entered, 
manipulated, and modified to achieve specific applications 
goals. Also included are sample runs for many of the pro
grams and a disk containing all of the book's programs, for 
use on the IBM PCIXT/AT and compatibles with at least 
256K. 260 pp., 95 illus. 
Paper $18.95 Hard $25.95 
Book No. 2857 

0 BUILDYOUROWNIBM® COMPATIBLEANDSAVE 
A BUNDLE-Aubrey Pilgrim 

Now you can build one of these computers yourself 
... and you can do it for hundreds, even thousands, of dol
lars less than comparable, factory-built systems. This book 
also includes instructions for upgrading an IBM computer. 
Why should you pay more than you have to when the com
puter you'll assemble using this book will completely fulfill 
your word processing, spreadsheet, database, games, 
graphics, educational, and other applications needs. And 
even if you can afford the high prices of big-name computer 
manufacturers, you'll benefit from customizing one to fit your 
own personal requirements and you'll gain valuable insight 
into how a computer works by assembling one yourself. 224 
pp., 108 illus. 
Paper $14.95 Hard $22.95 
Book No. 2831 

0 dBASE Ill® PLUS: ADVANCED APPLICATIONS FOR 
NONPROGRAMMERS-Richard H. Baker 

The new dBASE Ill PLUS makes all the advantages 
offered by dBASE as a programming language incredibly 
easy even for the non-programmer. And to make it even sim
pler for you to program like a pro; dBASE expert Richard 
Baker leads you painlessly through each programming step. 
Focusing on the practical rather than the theoretical aspects 
of programming, he explores dBASE Ill PLUS on three 
levels-entry level, intermediate, and experienced-showing 
that it's possible to use dBASE effectively no matter what 
your experience. 448 pp., 232 illus. 
Paper $19.95 Hard $27.95 
Book No. 2808 

"Prices sub(ect to change without notice. 

0 C PROGRAMMER'S UTILITY LIBRARY-Frank 
Whitsell 

Here's a sourcebook that goes beyond simple program
ming techniques to focus on the efficient use of system 
resources to aid in the development of higher quality C pro
grams! It's a unique collection of ready-to-use functions and 
utilities! There's also a ready-to-run disk available for use 
on the IBM PC/X:f/AT and compatibles with at least 256K. 

200 pp., 268 illus. 
Paper $16.95 Hard $24.95 
Book No. 2855 

0 XYWRITE™ MADE EASIER-Davld H. 
Rothman 

''XyWrite is THE hot word processor right now and I think 
people should know about it . . . the most powerful word 
processor out there and . .. Rothman makes you understand 
how to use it. " -From the Foreword by John C. Dvorak. 
Fully endorsed by XyQuest Corporation, developers and pub
lishers of XyWrite word processing software, this guide 
makes learning to use XyWrite almost completely painless. 
352 pp., 12 illus. 
Paper $21.95 Hard $27.95 
Book No. 2820 

0 PROGRAMMING WITH dBASE Ill® PLUS-Cary N. 
Prague and James E. Hammitt 

Packed with expert programming techniques and short
cuts, this is an essential guide to Ashton Tate's newest ver
sion of its dBASE relational database manager for the 
IBM® PC™. It includes all the practical, use-it-now advice 
and guidance beginning PC users are looking for ... as well 
as power programming techniques that will allow more ad
vanced users to increase productivity while sharply reduc
ing application development time. Exceptionally well 
documented and packed with program examples-including 
a sophisticated payroll and inventory system-this is a 
sourcebook that goes well beyond material covered in ordi
nary user's manuals. 384 pp., 150 illus. 
Paper $19.95 Hard $29.95 
Book No. 2726 
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Amiga ™ Assembly Language Programming 
Jake Commander 

Your key to realizing the full potential of 
your Amiga and its powerful 68000 CPU! 

If you're a serious programmer who wants to start getting more produc
tivity power from your Amiga, you will welcome this opportunity to break away 
from the limitations imposed by pre-packaged software ... to discov6r the 
power and versatility of assembly language programmming. 

Starting with an explanation of how programming is achieved in assem
bly language, machine language expert, Jake Commander outlines the ba
sic concepts of assembly, including binary arithmetic, and the syntax and 
addresses and effects of assembly commands. He then narrows in specifi
cally on using assembly language on the Amiga. You'll take a close-up look 
at the software and hardware of the Amiga, including the 68000 microproces
sor. In addition, you'll find out how the Amiga development system oper
ates, how its software interface works, and how everything works together 
to achieve maximum speed and performance. Commander leads you step
by-step, through Amiga's basic functions covering the fundamentals of ma
chine code ... editor and assembler operations . .. and how-to's for han
dling the 68000's addressing modes and instruction set. Number 
manipulation (with an emphasis on binary) is also explained. 

Finally, all the topics covered are clearly illustrated with an assembly 
program that creates a calculator in four number bases: decimal, 
hexadecimal (base 16), octal (base 8), and binary (base 2). By utilizing a 
combination of useful theory and actual programming examples through
out, Commander helps you build the kind of understanding you need to be 
the master of your micro ... not just a user of a language. Even the pro
gram design process and steps involved in writing assembly code are care
fully and clearly demonstrated ... so that by the time you've gotten to the 
last page, you' l~ be eager to strike out on your own. 

Currently a senior software engineer, Jake Commander has also been 
a technical consultant for 80-Micro Magazine and a columnist for such maga
zines as Creative Computing, Portable._ tOO, and 80 Micro. He was a pioneer 
in the development of microcomputer software and has authored numerous 
bestselling programs. He is also the author of TAB's Macintosh Assembly 
Language Programming. 
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